Skip to main content

New Python Course: Cleaning Data in Python

A huge part of a data scientist's job is cleaning your data before jumping into analysis. Today, we're introducing a course by Daniel Chen to teach you how to do just that in Python. Enjoy!

Hello Pythonistas! We've got a brand new python course released today: Cleaning Data in Python, by Daniel Chen.

A vital component of data science involves acquiring raw data and getting it into a form ready for analysis. In fact, it is commonly said that data scientists spend 80% of their time cleaning and manipulating data, and only 20% of their time actually analyzing it. This course will equip you with all the skills you need to clean your data in Python, from learning how to diagnose your data for problems to dealing with missing values and outliers. At the end of the course, you'll apply all of the techniques you've learned to a case study in which you'll clean a real-world Gapminder dataset!


Start course for free


Cleaning Data in Python features interactive exercises that combine high-quality video, in-browser coding, and gamification for an engaging learning experience that will make you a master in cleaning data in Python!


What you'll learn:

So you've just got a brand new dataset and are itching to start exploring it. But where do you begin, and how can you be sure your dataset is clean? This first chapter will introduce you to the world of data cleaning in Python! You'll learn how to explore your data with an eye for diagnosing issues such as outliers, missing values, and duplicate rows. Start the first chapter for free.

Here in chapter 2, you'll learn about the principles of tidy data and more importantly, why you should care about them and how they make subsequent data analysis more efficient. You'll gain first-hand experience with reshaping and tidying your data using techniques such as pivoting and melting.

The ability to transform and combine your data is a crucial skill in data science, because your data may not always come in one monolithic file or table for you to load. A large dataset may be broken into separate datasets to facilitate easier storage and sharing. Or if you are dealing with time series data, for example, you may have a new dataset for each day. No matter the reason, it is important to be able to combine datasets so you can either clean a single dataset or clean each dataset separately and then combine them later so you can run your analysis on a single dataset. In the third chapter, you'll learn all about combining data.

In chapter 4, you'll dive into some of the grittier aspects of data cleaning. You'll learn about string manipulation and pattern matching to deal with unstructured data, and then explore techniques to deal with missing or duplicate data. You'll also learn the valuable skill of programmatically checking your data for consistency, which will give you confidence that your code is running correctly and that the results of your analysis are reliable!

In the final chapter, you'll apply all of the data cleaning techniques you've learned in this course towards tidying a real-world, messy dataset obtained from the Gapminder Foundation. Once you're done, not only will you have a clean and tidy dataset, you'll also be ready to start working on your own data science projects using the power of Python! Enjoy!


Start the course now