ARIMA Models in R

Become an expert in fitting ARIMA (autoregressive integrated moving average) models to time series data using R.
Start Course for Free
4 Hours13 Videos45 Exercises25,106 Learners
3600 XP

Create Your Free Account

GoogleLinkedInFacebook
or
By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA. You confirm you are at least 16 years old (13 if you are an authorized Classrooms user).

Loved by learners at thousands of companies


Course Description

In this course, you will become an expert in fitting ARIMA models to time series data using R. First, you will explore the nature of time series data using the tools in the R stats package. Next, you learn how to fit various ARMA models to simulated data (where you will know the correct model) using the R package astsa. Once you have mastered the basics, you will learn how to fit integrated ARMA models, or ARIMA models to various real data sets. You will learn how to check the validity of an ARIMA model and you will learn how to forecast time series data. Finally, you will learn how to fit ARIMA models to seasonal data, including forecasting using the astsa package.

  1. 1

    Time Series Data and Models

    Free
    You will investigate the nature of time series data and learn the basics of ARMA models that can explain the behavior of such data. You will learn the basic R commands needed to help set up raw time series data to a form that can be analyzed using ARMA models.
    Play Chapter Now
  2. 2

    Fitting ARMA models

    You will discover the wonderful world of ARMA models and how to fit these models to time series data. You will learn how to identify a model, how to choose the correct model, and how to verify a model once you fit it to data. You will learn how to use R time series commands from the stats and astsa packages.
    Play Chapter Now
  3. 3

    ARIMA Models

    Now that you know how to fit ARMA models to stationary time series, you will learn about integrated ARMA (ARIMA) models for nonstationary time series. You will fit the models to real data using R time series commands from the stats and astsa packages.
    Play Chapter Now
  4. 4

    Seasonal ARIMA

    You will learn how to fit and forecast seasonal time series data using seasonal ARIMA models. This is accomplished using what you learned in the previous chapters and by learning how to extend the R time series commands available in the stats and astsa packages.
    Play Chapter Now
In the following tracks
Quantitative AnalystTime Series
Collaborators
Lore DirickMatt Isaacs
David Stoffer Headshot

David Stoffer

Professor of Statistics at the University of Pittsburgh
David Stoffer is a Professor of Statistics at the University of Pittsburgh. He is member of the editorial board of the Journal of Time Series Analysis and Journal of Forecasting. David is the coauthor of the book "Time Series Analysis and Its Applications: With R Examples", which is the basis of this course. Another (free) book he wrote on Time Series Analysis is available here.
See More

What do other learners have to say?

I've used other sites—Coursera, Udacity, things like that—but DataCamp's been the one that I've stuck with.

Devon Edwards Joseph
Lloyds Banking Group

DataCamp is the top resource I recommend for learning data science.

Louis Maiden
Harvard Business School

DataCamp is by far my favorite website to learn from.

Ronald Bowers
Decision Science Analytics, USAA