Skip to main content
HomeRIntroduction to R

# Introduction to R

4.7+
539 reviews
Beginner

Master the basics of data analysis in R, including vectors, lists, and data frames, and practice R with real data sets.

Start Course for Free
4 Hours62 Exercises
2,698,472 LearnersStatement of Accomplishment

## Create Your Free Account

GoogleLinkedInFacebook

or

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.
Training 2 or more people?Try DataCamp For Business

## Learn R Programming

R programming language is a useful tool for data scientists, analysts, and statisticians, especially those working in academic settings. R's ability to handle complex analyses such as machine learning, financial modeling, and more makes it a valuable asset for a wide range of data-related tasks.

This introduction to R course covers the basics of this open source language, including vectors, factors, lists, and data frames. You’ll gain useful coding skills and be ready to start your own data analysis in R.

## Gain an Introduction to R

You’ll get started with basic operations, like using the console as a calculator and understanding basic data types in R. Once you’ve had a chance to practice, you’ll move on to creating vectors and try out your new R skills on a data set based on betting in Las Vegas.

Next, you’ll learn how to work with matrices in R, learning how to create them, and perform calculations with them. You’ll also examine how R uses factors to store categorical data. Finally, you’ll explore how to work with R data frames and lists.

## Master the R Basics for Data Analysis

By the time you’ve completed our Introduction to R course, you’ll be able to use R for your own data analysis. These sought-after skills can help you progress in your career and set you up for further learning. This course is part of several tracks, including Data Analyst with R, Data Scientist with R, and R Programming, all of which can help you develop your knowledge.
For Business

### .css-1goj2uy{margin-right:8px;}Group.css-gnv7tt{font-size:20px;font-weight:700;white-space:nowrap;}.css-12nwtlk{box-sizing:border-box;margin:0;min-width:0;color:#05192D;font-size:16px;line-height:1.5;font-size:20px;font-weight:700;white-space:nowrap;}Training 2 or more people?

Get your team access to the full DataCamp library, with centralized reporting, assignments, projects and more
Try DataCamp for BusinessFor a bespoke solution book a demo.

### In the following Tracks

Certification Available

#### Data Analyst with R

Go To Track
Certification Available

Go To Track

Go To Track
1. 1

### Intro to basics

Free

Take your first steps with R. In this chapter, you will learn how to use the console as a calculator and how to assign variables. You will also get to know the basic data types in R. Let's get started.

Play Chapter Now
How it works
100 xp
Arithmetic with R
100 xp
Variable assignment
100 xp
Variable assignment (2)
100 xp
Variable assignment (3)
100 xp
Apples and oranges
100 xp
Basic data types in R
100 xp
What's that data type?
100 xp
2. 2

### Vectors

We take you on a trip to Vegas, where you will learn how to analyze your gambling results using vectors in R. After completing this chapter, you will be able to create vectors in R, name them, select elements from them, and compare different vectors.

3. 3

### Matrices

In this chapter, you will learn how to work with matrices in R. By the end of the chapter, you will be able to create matrices and understand how to do basic computations with them. You will analyze the box office numbers of the Star Wars movies and learn how to use matrices in R. May the force be with you!

4. 4

### Factors

Data often falls into a limited number of categories. For example, human hair color can be categorized as black, brown, blond, red, grey, or white—and perhaps a few more options for people who color their hair. In R, categorical data is stored in factors. Factors are very important in data analysis, so start learning how to create, subset, and compare them now.

5. 5

### Data frames

Most datasets you will be working with will be stored as data frames. By the end of this chapter, you will be able to create a data frame, select interesting parts of a data frame, and order a data frame according to certain variables.

6. 6

### Lists

As opposed to vectors, lists can hold components of different types, just as your to-do lists can contain different categories of tasks. This chapter will teach you how to create, name, and subset these lists.

For Business

### GroupTraining 2 or more people?

Get your team access to the full DataCamp library, with centralized reporting, assignments, projects and more

### In the following Tracks

Certification Available

#### Data Analyst with R

Go To Track
Certification Available

Go To Track

#### R Programming

Go To Track
Jonathan Cornelissen

Co-founder of DataCamp

Jonathan Cornelissen is one of the co-founders of DataCamp and the initial DataCamp CEO, and is interested in everything related to data science, education and entrepreneurship. He holds a PhD in financial econometrics, and was the original author of an R package for quantitative finance.

More information at: jonathancornelissen.com
Follow @cornelissenjo or here
Read on Medium
Connect on Linkedin
See More

## Don’t just take our word for it

*4.7
from 539 reviews
78%
17%
5%
1%
0%
Sort by
• Adir P.
4 months

Hands-on makes a difference

• Gustavo C.
6 months

Great

• Priscila L.
6 months

Very good

• Rogelio C.
6 months

None.

• Edmundo M.
6 months

The course organized in the main structures of data (from vectors to dataframes and lists) and how to subset on any of them and apply operarions has been to me the best way of learning and storing on my long term memory the most important basic functions of R. The practices and exercises were also well structured, practical and comprehensive.

"Hands-on makes a difference"

Adir P.

"Great"

Gustavo C.

"Very good"

Priscila L.

## Create Your Free Account

GoogleLinkedInFacebook

or

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.