Course Description
This course extends your existing Python skills to provide a stronger foundation in data visualization in Python. You’ll get a broader coverage of the Matplotlib library and an overview of seaborn, a package for statistical graphics. Topics covered include customizing graphics, plotting two-dimensional arrays (like pseudocolor plots, contour plots, and images), statistical graphics (like visualizing distributions and regressions), and working with time series and image data.
Following a review of basic plotting with Matplotlib, this chapter delves into customizing plots using Matplotlib. This includes overlaying plots, making subplots, controlling axes, adding legends and annotations, and using different plot styles.
This chapter showcases various techniques for visualizing two-dimensional arrays. This includes the use, presentation, and orientation of grids for representing two-variable functions followed by discussions of pseudocolor plots, contour plots, color maps, two-dimensional histograms, and images.
Statistical plots with Seaborn
This is a high-level tour of the seaborn plotting library for producing statistical graphics in Python. We’ll cover seaborn tools for computing and visualizing linear regressions, as well as tools for visualizing univariate distributions (like strip, swarm, and violin plots) and multivariate distributions (like joint plots, pair plots, and heatmaps). We’ll also discuss grouping categories in plots.
Analyzing time series and images
This chapter ties together the skills gained so far through examining time series data and images. You’ll customize plots of stock data, generate histograms of image pixel intensities, and enhance image contrast through histogram equalization.

Team Anaconda
Data Science Training
This course was created in collaboration with Anaconda. With over 6 million users, the open source Anaconda Distribution is the fastest and easiest way to do Python data science and machine learning. It's the industry standard for developing, testing, and training on a single machine.
See More