In this course you'll lear to add multiple variables to linear models and to use logistic regression for classification.
By continuing you accept the Terms of Use and Privacy Policy, that your data will be stored outside of the EU, and that you are 16 years or older.
In this course you'll take your skills with simple linear regression to the next level. By learning multiple and logistic regression techniques you will gain the skills to model and predict both numeric and categorical outcomes using multiple input variables. You'll also learn how to fit, visualize, and interpret these models. Then you'll apply your skills to learn about Italian restaurants in New York City!
In this chapter you'll learn about the class of linear models called "parallel slopes models." These include one numeric and one categorical explanatory variable.
This chapter will show you how to add two, three, and even more numeric explanatory variables to a linear model.
Explore the relationship between price and the quality of food, service, and decor for Italian restaurants in NYC.
This chapter covers model evaluation. By looking at different properties of the model, including the adjusted R-squared, you'll learn to compare models so that you can select the best one. You'll also learn about interaction terms in linear models.
In this chapter you'll learn about using logistic regression, a generalized linear model (GLM), to predict a binary outcome and classify observations.
In this chapter you'll learn about the class of linear models called "parallel slopes models." These include one numeric and one categorical explanatory variable.
This chapter covers model evaluation. By looking at different properties of the model, including the adjusted R-squared, you'll learn to compare models so that you can select the best one. You'll also learn about interaction terms in linear models.
This chapter will show you how to add two, three, and even more numeric explanatory variables to a linear model.
In this chapter you'll learn about using logistic regression, a generalized linear model (GLM), to predict a binary outcome and classify observations.
Explore the relationship between price and the quality of food, service, and decor for Italian restaurants in NYC.
“I've used other sites, but DataCamp's been the one that I've stuck with.”
Devon Edwards Joseph
Lloyd's Banking Group
“DataCamp is the top resource I recommend for learning data science.”
Louis Maiden
Harvard Business School
“DataCamp is by far my favorite website to learn from.”
Ronald Bowers
Decision Science Analytics @ USAA