Skip to content
Project: Clustering Antarctic Penguin Species
source: @allison_horst https://github.com/allisonhorst/penguins
You have been asked to support a team of researchers who have been collecting data about penguins in Antartica! The data is available in csv-Format as penguins.csv
Origin of this data : Data were collected and made available by Dr. Kristen Gorman and the Palmer Station, Antarctica LTER, a member of the Long Term Ecological Research Network.
The dataset consists of 5 columns.
| Column | Description |
|---|---|
| culmen_length_mm | culmen length (mm) |
| culmen_depth_mm | culmen depth (mm) |
| flipper_length_mm | flipper length (mm) |
| body_mass_g | body mass (g) |
| sex | penguin sex |
Unfortunately, they have not been able to record the species of penguin, but they know that there are at least three species that are native to the region: Adelie, Chinstrap, and Gentoo. Your task is to apply your data science skills to help them identify groups in the dataset!
# Import Required Packages
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# Loading and examining the dataset
penguins_df = pd.read_csv("penguins.csv")
penguins_df.head()dummy = pd.get_dummies(penguins_df['sex'])
train_df = pd.concat([penguins_df.drop('sex', axis=1), dummy], axis=1)
train_df.head()train_scaled = StandardScaler()
scaled = train_scaled.fit_transform(train_df)inertias = []
for i in range(1, 10):
model = KMeans(n_clusters=i, random_state=8).fit(scaled)
inertias.append(model.inertia_)
inertiasplt.plot(inertias)
plt.shown_clusters = 2
kmeans = KMeans(n_clusters=n_clusters, random_state=8).fit(scaled)
plt.scatter(penguins_df['culmen_length_mm'], penguins_df['culmen_depth_mm'], c=kmeans.labels_, alpha=0.5)
plt.xlabel('Culmen Length (mm)')
plt.ylabel('Culmen Depth (mm)')
plt.title('KMeans Clustering of Penguins')
plt.show()numeric_columns = ['culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm', 'body_mass_g']
penguins_df['label'] = kmeans.labels_
stat_penguins = penguins_df.groupby('label')[numeric_columns].mean().reset_index()
stat_penguins.head()