Skip to content
Project: Clustering Antarctic Penguin Species
source: @allison_horst https://github.com/allisonhorst/penguins
You have been asked to support a team of researchers who have been collecting data about penguins in Antartica! The data is available in csv-Format as penguins.csv
Origin of this data : Data were collected and made available by Dr. Kristen Gorman and the Palmer Station, Antarctica LTER, a member of the Long Term Ecological Research Network.
The dataset consists of 5 columns.
Column | Description |
---|---|
culmen_length_mm | culmen length (mm) |
culmen_depth_mm | culmen depth (mm) |
flipper_length_mm | flipper length (mm) |
body_mass_g | body mass (g) |
sex | penguin sex |
Unfortunately, they have not been able to record the species of penguin, but they know that there are at least three species that are native to the region: Adelie, Chinstrap, and Gentoo. Your task is to apply your data science skills to help them identify groups in the dataset!
# Import Required Packages
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# Loading and examining the dataset
penguins_df = pd.read_csv("penguins.csv")
penguins_df.head()
penguin_dummies = pd.get_dummies(penguins_df['sex'], drop_first=True)
penguin_dummies = pd.concat([penguins_df, penguin_dummies], axis=1)
penguin_dummies = penguin_dummies.drop('sex', axis=1)
print(penguin_dummies.head())
ks = range(1, 7)
inertias = []
for k in ks:
model = KMeans(n_clusters=k)
model.fit(penguin_dummies)
inertias.append(model.inertia_)
plt.plot(ks, inertias, '-o')
plt.xlabel('Number of clusters, k')
plt.ylabel('Inertia')
plt.xticks(ks)
plt.show()
kmeans = KMeans(n_clusters=3, random_state=90).fit(penguin_dummies)
numeric_columns = ['culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm', 'body_mass_g']
penguins_df['label'] = kmeans.labels_
stat_penguins = penguins_df.groupby('label')[numeric_columns].mean()
print(stat_penguins)