Skip to content

A common problem when creating models to generate business value from data is that the datasets can be so large that it can take days for the model to generate predictions. Ensuring that your dataset is stored as efficiently as possible is crucial for allowing these models to run on a more reasonable timescale without having to reduce the size of the dataset.

You've been hired by a major online data science training provider called Training Data Ltd. to clean up one of their largest customer datasets. This dataset will eventually be used to predict whether their students are looking for a new job or not, information that they will then use to direct them to prospective recruiters.

You've been given access to customer_train.csv, which is a subset of their entire customer dataset, so you can create a proof-of-concept of a much more efficient storage solution. The dataset contains anonymized student information, and whether they were looking for a new job or not during training:

ColumnDescription
student_idA unique ID for each student.
cityA code for the city the student lives in.
city_development_indexA scaled development index for the city.
genderThe student's gender.
relevant_experienceAn indicator of the student's work relevant experience.
enrolled_universityThe type of university course enrolled in (if any).
education_levelThe student's education level.
major_disciplineThe educational discipline of the student.
experienceThe student's total work experience (in years).
company_sizeThe number of employees at the student's current employer.
company_typeThe type of company employing the student.
last_new_jobThe number of years between the student's current and previous jobs.
training_hoursThe number of hours of training completed.
job_changeAn indicator of whether the student is looking for a new job (1) or not (0).
# Import necessary libraries
import pandas as pd

# Load the dataset
ds_jobs = pd.read_csv("customer_train.csv")

# View the dataset
ds_jobs.head()
# Create a copy of ds_jobs for transforming
ds_jobs_transformed = ds_jobs.copy()
#information on ds_jobs
ds_jobs_info = ds_jobs_transformed.info()
print(ds_jobs_info)
#unique values in dataset
ds_jobs_unique = ds_jobs_transformed.nunique()
#unique values in education_level column
ds_jobs_transformed["education_level"].unique()
#unique values in experience column
ds_jobs_transformed["experience"].unique()
#unique values in comapny_size column
ds_jobs_transformed["company_size"].unique()
#unique values in last_new_job column
ds_jobs_transformed["last_new_job"].unique()
# EDA to help identify ordinal, nominal, and two-factor categories
for col in ds_jobs.select_dtypes("object").columns:
    print(ds_jobs_transformed[col].value_counts(), '\n')
# Create a dictionary of columns containing ordered categorical data
ordered_cats = {
    'enrolled_university': ['no_enrollment', 'Part time course', 'Full time course'],
    'education_level': ['Primary School', 'High School', 'Graduate', 'Masters', 'Phd'],
    'experience': ['<1'] + list(map(str, range(1, 21))) + ['>20'],
    'company_size': ['<10', '10-49', '50-99', '100-499', '500-999', '1000-4999', '5000-9999', '10000+'],
    'last_new_job': ['never', '1', '2', '3', '4', '>4']
}

# Create a mapping dictionary of columns containing two-factor categories to convert to Booleans
two_factor_cats = {
    'relevant_experience': {'No relevant experience': False, 'Has relevant experience': True},
    'job_change': {0.0: False, 1.0: True}
}

# Loop through DataFrame columns to efficiently change data types
for col in ds_jobs_transformed:
    
    # Convert two-factor categories to bool
    if col in ['relevant_experience', 'job_change']:
        ds_jobs_transformed[col] = ds_jobs_transformed[col].map(two_factor_cats[col])
#check data types of each columns:
ds_jobs_data_types = ds_jobs_transformed.dtypes
print(ds_jobs_data_types)
#convert experience to ordered categorical:
experience_order = ['<1', '1', '2', '3', '4', '5', '6', '7', '8', '9',
                    '10', '11', '12', '13', '14', '15', '16', '17',
                    '18', '19', '20', '>20']

ds_jobs_transformed["experience"] = pd.Categorical(
    ds_jobs_transformed["experience"],
    categories=experience_order,
    ordered=True
)
ds_jobs_transformed["experience"].dtype
Hidden output
#convert last_new_job to ordered categorical:
last_new_job_order = ['never', '>4', '4', '3', '2', '1']

ds_jobs_transformed["last_new_job"] = pd.Categorical(
    ds_jobs_transformed["last_new_job"],
    categories=last_new_job_order,
    ordered=True
)
ds_jobs_transformed["last_new_job"].dtype
# Convert specified columns to categorical type
categorical_columns = ['gender', 'city', 'enrolled_university', 
                       'education_level', 'major_discipline', 
                       'company_size', 'company_type']

for col in categorical_columns:
    ds_jobs_transformed[col] = ds_jobs_transformed[col].astype('category')
ds_jobs_transformed.dtypes
from pandas.api.types import CategoricalDtype

# Define ordered category for 'enrolled_university'
enrolled_order = CategoricalDtype(
    categories=['no_enrollment', 'Part time course', 'Full time course'],
    ordered=True
)
ds_jobs_transformed['enrolled_university'] = ds_jobs_transformed['enrolled_university'].astype(enrolled_order)

#education_order
education_order = CategoricalDtype(
    categories=[
        'Primary School', 
        'High School', 
        'Graduate', 
        'Masters', 
        'Phd'
    ],
    ordered=True
)

ds_jobs_transformed['education_level'] = ds_jobs_transformed['education_level'].astype(education_order)

#company_size_order:
company_size_order = CategoricalDtype(
    categories=[
        '<10', 
        '10-49', 
        '50-99', 
        '100-500', 
        '500-999', 
        '1000-4999', 
        '5000-9999', 
        '10000+'
    ],
    ordered=True
)

ds_jobs_transformed['company_size'] = ds_jobs_transformed['company_size'].astype(company_size_order)

#converting student_id into int32
ds_jobs_transformed["student_id"] = ds_jobs_transformed["student_id"].astype("int32")

#converting training_hours into int32
ds_jobs_transformed["training_hours"] = ds_jobs_transformed["training_hours"].astype("int32")

ds_jobs_transformed.dtypes
#convert city_development_index into float16:
ds_jobs_transformed["city_development_index"] = ds_jobs_transformed["city_development_index"].astype("float16")

ds_jobs_transformed.dtypes
Hidden output
# Filter students with 10 or more years experience at companies with at least 1000 employees
ds_jobs_transformed = ds_jobs_transformed[(ds_jobs_transformed['experience'] >= '10') & (ds_jobs_transformed['company_size'] >= '1000-4999')]