Skip to content
algebra stuff mean median mode
def mean(data):
return sum(data) / len(data)
def median(data):
sorted_data = sorted(data)
n = len(sorted_data)
if n % 2 == 0:
return (sorted_data[n//2 - 1] + sorted_data[n//2]) / 2
else:
return sorted_data[n//2]
import matplotlib.pyplot as plt
def histogram(data, bins=8):
plt.hist(data, bins=bins, edgecolor='black')
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.title('Histogram')
plt.show()
import matplotlib.pyplot as plt
def box_and_whisker_plot_rotated(data):
plt.boxplot(data, vert=False)
plt.xlabel('Data')
plt.ylabel('Value')
plt.title('Box and Whisker Plot')
plt.show()
import math
def standard_deviation(data):
mean_val = mean(data)
variance = sum((x - mean_val) ** 2 for x in data) / len(data)
return math.sqrt(variance)
data = [23,45,16,75,32,35,28,35]
print("Mean:", mean(data))
print("Median:", median(data))
histogram(data)
box_and_whisker_plot_rotated(data)
print("Standard Deviation:", standard_deviation(data))
from collections import Counter
def mode(data):
data_counter = Counter(data)
mode_count = max(data_counter.values())
mode_values = [val for val, count in data_counter.items() if count == mode_count]
return mode_values
def data_range(data):
return max(data) - min(data)
data = [23,45,16,75,32,35,28,35]
print("Mode:", mode(data))
print("Range:", data_range(data))
import numpy as np
def lower_quartile(data):
return np.percentile(data, 25)
def upper_quartile(data):
return np.percentile(data, 75)
data = [23,45,16,75,32,35,28,35]
print("Lower Quartile (Q1):", lower_quartile(data))
print("Upper Quartile (Q3):", upper_quartile(data))
import numpy as np
from scipy import stats
def identify_outliers_zscore(data, threshold=3):
z_scores = np.abs(stats.zscore(data))
outliers = np.where(z_scores > threshold)
return outliers[0]
data = [23,45,16,75,32,35,28,35]
outlier_indices = identify_outliers_zscore(data)
print("Outlier indices:", outlier_indices)