Skip to content

Welcome to New York City, one of the most-visited cities in the world. There are many Airbnb listings in New York City to meet the high demand for temporary lodging for travelers, which can be anywhere between a few nights to many months. In this project, we will take a closer look at the New York Airbnb market by combining data from multiple file types like .csv, .tsv, and .xlsx.

Recall that CSV, TSV, and Excel files are three common formats for storing data. Three files containing data on 2019 Airbnb listings are available to you:

data/airbnb_price.csv This is a CSV file containing data on Airbnb listing prices and locations.

  • listing_id: unique identifier of listing
  • price: nightly listing price in USD
  • nbhood_full: name of borough and neighborhood where listing is located

data/airbnb_room_type.xlsx This is an Excel file containing data on Airbnb listing descriptions and room types.

  • listing_id: unique identifier of listing
  • description: listing description
  • room_type: Airbnb has three types of rooms: shared rooms, private rooms, and entire homes/apartments

data/airbnb_last_review.tsv This is a TSV file containing data on Airbnb host names and review dates.

  • listing_id: unique identifier of listing
  • host_name: name of listing host
  • last_review: date when the listing was last reviewed
# Import necessary packages
import pandas as pd
import numpy as np


csv_data = pd.read_csv('data/airbnb_price.csv')
tsv_data = pd.read_csv('data/airbnb_last_review.tsv', sep='\t')
xlsx_data = pd.read_excel('data/airbnb_room_type.xlsx')

combined_data = pd.concat([csv_data, tsv_data, xlsx_data], ignore_index=True)

combined_data = pd.merge(csv_data, tsv_data, on='listing_id', how='outer')
combined_data = pd.merge(combined_data, xlsx_data, on='listing_id', how='outer')

combined_data['last_review_date'] = pd.to_datetime(combined_data['last_review'], format='%B %d %Y')
first_reviewed = combined_data['last_review_date'].min()
last_reviewed = combined_data['last_review_date'].max()

# How many of the listings are private rooms?
combined_data['room_type'] = combined_data['room_type'].str.lower()
private_room_count = combined_data[combined_data['room_type'] == 'private room'].shape[0]

# What is the average listing price?
combined_data['price_clean'] = combined_data['price'].str.replace(' dollars', '').astype(float)
avg_price = combined_data['price_clean'].mean()

review_dates = pd.DataFrame({
    'first_reviewed': [first_reviewed],
    'last_reviewed': [last_reviewed],
    'nb_private_rooms': [private_room_count],
    'avg_price': [round(avg_price, 2)]
})
import pandas as pd
import re
import matplotlib.pyplot as plt
import seaborn as sns
from collections import Counter
# Load your CSV file
data = pd.read_csv('test_sample.csv', on_bad_lines='skip', engine='python')

# Preview the data
print(data.head())
data.info()
# Check empty observation 
print(data.isna().sum())
# Droping non useful columns
columns_to_check = ['text_original', 'likes_count', 'created_time'] 
data.dropna(subset=columns_to_check, inplace=True)
print(data.isna().sum())
data.head()
# Droping non useful columns
data = data.drop(columns=['text_additional', 'shares_count', 'comments_count', 'views_count'])
# Extract hashtags from a specific column
data['hashtags'] = data['text_original'].apply(lambda x: re.findall(r'#\w+', x))

print(data)
# Function to extract hashtags from a text field
def extract_hashtags(text):
    if pd.isnull(text):
        return []
    return re.findall(r'#\w+', text)

# Combine the two text fields and extract hashtags
data['Hashtags'] = data['text_original'].fillna('')
data['Hashtags'] = data['Hashtags'].apply(extract_hashtags)
print(data)
# Flatten the list of hashtags and count frequency
all_hashtags = [hashtag.lower() for hashtags in data['Hashtags'] for hashtag in hashtags]
hashtag_counts = pd.Series(all_hashtags).value_counts()

# Display the top 10 hashtags
print("Top 10 Hashtags:")
print(hashtag_counts.head(10))
import matplotlib.pyplot as plt
import seaborn as sns

# Visualize the top 10 hashtags
top_n = 10
top_hashtags = hashtag_counts.head(top_n)

plt.figure(figsize=(12, 6))
sns.barplot(x=top_hashtags.values, y=top_hashtags.index, palette='viridis')
plt.title(f"Top {top_n} Hashtags")
plt.xlabel("Frequency")
plt.ylabel("Hashtag")
plt.show()