Skip to content
Project: Clustering Antarctic Penguin Species
source: @allison_horst https://github.com/allisonhorst/penguins
You have been asked to support a team of researchers who have been collecting data about penguins in Antartica! The data is available in csv-Format as penguins.csv
Origin of this data : Data were collected and made available by Dr. Kristen Gorman and the Palmer Station, Antarctica LTER, a member of the Long Term Ecological Research Network.
The dataset consists of 5 columns.
| Column | Description |
|---|---|
| culmen_length_mm | culmen length (mm) |
| culmen_depth_mm | culmen depth (mm) |
| flipper_length_mm | flipper length (mm) |
| body_mass_g | body mass (g) |
| sex | penguin sex |
Unfortunately, they have not been able to record the species of penguin, but they know that there are at least three species that are native to the region: Adelie, Chinstrap, and Gentoo. Your task is to apply your data science skills to help them identify groups in the dataset!
# Import Required Packages
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# Loading and examining the dataset
penguins_df = pd.read_csv("penguins.csv")
penguins_df.head()0. Exploring the dataset first and changing categorical data to numeric
penguins_df.info()penguins_df = pd.get_dummies(penguins_df, drop_first=True)
penguins_df1. Finding the appropriate number of clusters:
normalizer = StandardScaler()
normalized_penguins = normalizer.fit_transform(penguins_df)
inertias=[]
for i in range(1,10):
kmeans = KMeans(n_clusters=i, random_state=10)
kmeans.fit(normalized_penguins)
inertia = kmeans.inertia_
inertias.append(inertia)
print(inertias)
plt.plot(range(1,10), inertias, "-o")
plt.xlabel("number of clusters, k")
plt.ylabel("inertias")
plt.title("Finding optimal K using elbow method")
plt.show()2. Performing the clustering with k =4
model = KMeans(n_clusters=4, random_state=10)
model.fit(normalized_penguins)
labels = model.labels_
penguins_df["labels"] = labelsimport seaborn as sns
sns.pairplot(penguins_df, hue ="labels")
plt.suptitle("K-means clustering k=4", y=1.02)3. Presenting the clustering results
numeric_columns = penguins_df.columns[:-2]
stat_penguins = penguins_df.groupby('labels')[numeric_columns].mean()
stat_penguins