A common problem when creating models to generate business value from data is that the datasets can be so large that it can take days for the model to generate predictions. Ensuring that your dataset is stored as efficiently as possible is crucial for allowing these models to run on a more reasonable timescale without having to reduce the size of the dataset.
You've been hired by a major online data science training provider called Training Data Ltd. to clean up one of their largest customer datasets. This dataset will eventually be used to predict whether their students are looking for a new job or not, information that they will then use to direct them to prospective recruiters.
You've been given access to customer_train.csv, which is a subset of their entire customer dataset, so you can create a proof-of-concept of a much more efficient storage solution. The dataset contains anonymized student information, and whether they were looking for a new job or not during training:
| Column | Description |
|---|---|
student_id | A unique ID for each student. |
city | A code for the city the student lives in. |
city_development_index | A scaled development index for the city. |
gender | The student's gender. |
relevant_experience | An indicator of the student's work relevant experience. |
enrolled_university | The type of university course enrolled in (if any). |
education_level | The student's education level. |
major_discipline | The educational discipline of the student. |
experience | The student's total work experience (in years). |
company_size | The number of employees at the student's current employer. |
company_type | The type of company employing the student. |
last_new_job | The number of years between the student's current and previous jobs. |
training_hours | The number of hours of training completed. |
job_change | An indicator of whether the student is looking for a new job (1) or not (0). |
# Import necessary libraries
import pandas as pd
# Load the dataset
ds_jobs = pd.read_csv("customer_train.csv")
# View the dataset
ds_jobs.head()# Create a copy of ds_jobs for transforming
ds_jobs_transformed = ds_jobs.copy()
# Start coding here. Use as many cells as you like!1. Exploratory data analysis
print("--- Informações Iniciais do DataFrame ---")
ds_jobs.info()
print()
print("--- Uso de Memória Inicial ---")
print(ds_jobs.memory_usage().sum(), "bytes")# Loop para inspecionar cada coluna do seu DataFrame
print("--- Analisando conteúdo das colunas ---\n")
print("-" * 30)
for column in ds_jobs_transformed.columns:
# Conta a quantidade de valores únicos na coluna atual
num_unique_values = ds_jobs_transformed[column].nunique()
# Imprime o nome da coluna e a contagem para sua análise
print(f"Coluna: '{column}'")
print(f"Número de valores únicos: {num_unique_values}")
# Facilita a identificação de categorias.
if num_unique_values < 25:
print(f"Valores: {ds_jobs_transformed[column].unique()}")
# Imprime o nome da coluna e a contagem para sua análise
print(f"Tipo: '{ds_jobs_transformed[column].dtype}'")
# Um separador para manter a organização
print("-" * 30)# Criar listas de colunas para cada categoria de transformação
2. Converting integers, floats, and unordered categories
# Criar listas de colunas para cada transformação
booleans = ['relevant_experience', 'job_change']
integers = ['student_id', 'training_hours']
floats = ['city_development_index']
nom_categories = ['city', 'gender', 'enrolled_university', 'major_discipline', 'company_type']
# Prepara a coluna relevant_experience para ser transformada em booleano
cat_to_bool_dict = {'No relevant experience':0, 'Has relevant experience':1}
ds_jobs_transformed['relevant_experience'] = ds_jobs_transformed['relevant_experience'].astype('category')
ds_jobs_transformed['relevant_experience'] = ds_jobs_transformed['relevant_experience'].cat.rename_categories(new_categories=cat_to_bool_dict)
# Converte as colunas categoricas que só tem 2 fatores em booleanos
ds_jobs_transformed[booleans] = ds_jobs_transformed[booleans].astype('bool')
# Converte colunas de números inteiros e racionáis para os tipos especificados
ds_jobs_transformed[integers] = ds_jobs_transformed[integers].astype("int32")
ds_jobs_transformed[floats] = ds_jobs_transformed[floats].astype("float16")
# Converte colunas de objeto para categoria nominal
ds_jobs_transformed[nom_categories] = ds_jobs_transformed[nom_categories].astype('category')3. Converting ordered categories
# Criar listas de colunas para cada transformação e listas contendo as ordens das categorias
ord_categories = [
'enrolled_university',
'education_level',
'experience',
'company_size',
'last_new_job'
]
category_order_lists = [
['no_enrollment', 'Part time course', 'Full time course'],
['Primary School', 'High School', 'Graduate', 'Masters', 'Phd'],
['<1', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '>20'],
['<10', '10-49', '50-99', '100-499', '500-999', '1000-4999', '5000-9999', '10000+'],
['never', '1', '2', '3', '4', '>4']
]
# Loop para repetir operações de criação de categorias ordenadas
for i in range(len(ord_categories)):
ds_jobs_transformed[ord_categories[i]] = ds_jobs_transformed[ord_categories[i]].astype('category')
ds_jobs_transformed[ord_categories[i]] = ds_jobs_transformed[ord_categories[i]].cat \
.set_categories(new_categories=category_order_lists[i], ordered=True) 4. Filtering on ordered categorical columns
# Estabelecendo o primeiro critério solicitado
condition1 = ds_jobs_transformed['experience'] >= '10'
# Estabelecendo o primeiro critério solicitado
condition2 = ds_jobs_transformed['company_size'] > '500-999'
# Filtrando o dataframe de acordo com ambos os critérios
ds_jobs_transformed = ds_jobs_transformed[(condition1)&(condition2)]print("--- Informações do DataFrame após transformações ---")
ds_jobs_transformed.info()
print()
print("--- Uso de Memória Inicial ---")
print(ds_jobs_transformed.memory_usage().sum(), "bytes")