Skip to content
Project: Clustering Antarctic Penguin Species
Arctic Penguin Exploration: Unraveling Clusters in the Icy Domain with K-means clustering
source: @allison_horst https://github.com/allisonhorst/penguins
You have been asked to support a team of researchers who have been collecting data about penguins in Antartica!
Origin of this data : Data were collected and made available by Dr. Kristen Gorman and the Palmer Station, Antarctica LTER, a member of the Long Term Ecological Research Network.
The dataset consists of 5 columns.
- culmen_length_mm: culmen length (mm)
- culmen_depth_mm: culmen depth (mm)
- flipper_length_mm: flipper length (mm)
- body_mass_g: body mass (g)
- sex: penguin sex
Unfortunately, they have not been able to record the species of penguin, but they know that there are three species that are native to the region: Adelie, Chinstrap, and Gentoo, so your task is to apply your data science skills to help them identify groups in the dataset!
# Import Required Packages
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# Loading and examining the dataset
penguins_df = pd.read_csv("data/penguins.csv")def clean_data(df):
for col in df.columns:
if (df[col].isnull().sum() > 0) and (df[col].dtype =="float64"):
mean=df[col].mean()
df[col]=df[col].fillna(mean)
elif(df[col].isnull().sum() > 0) and (df[col].dtype =="object"):
mode=df[col].mode()[0]
df[col]=df[col].fillna(mode)
return dfpenguins_clean=clean_data(penguins_df)
penguins_clean=penguins_clean.drop([9,14])
penguins_clean=pd.get_dummies(penguins_clean,drop_first=True)scaler=StandardScaler()
penguins_preprocessed=scaler.fit_transform(penguins_clean.values)pca=PCA()
pca.fit(penguins_preprocessed)
transforms=pca.transform(penguins_preprocessed)n_components=pca.n_components_pca=PCA(n_components=6)
pca.fit(penguins_preprocessed)
penguins_PCA=pca.transform(penguins_preprocessed)inertia=[]
cluster=[]
for i in range(1,11):
kmeans=KMeans(n_clusters=i,random_state=42)
kmeans.fit(penguins_preprocessed)
inertia.append(kmeans.inertia_)
cluster.append(i)plt.plot(cluster,inertia)
plt.show()xs=penguins_PCA[:,0]
ys=penguins_PCA[:,1]
n_cluster=4
kmeans=KMeans(n_clusters=n_cluster,random_state=42)
kmeans.fit(penguins_preprocessed)
plt.scatter(xs,ys,c=kmeans.labels_)
plt.xlabel("first_pca_component")
plt.ylabel("second_pca_component")
plt.title(f"k-means clustering by {n_cluster} clusters.")
plt.show()