Skip to content
Project: Clustering Antarctic Penguin Species
source: @allison_horst https://github.com/allisonhorst/penguins
You have been asked to support a team of researchers who have been collecting data about penguins in Antartica! The data is available in csv-Format as penguins.csv
Origin of this data : Data were collected and made available by Dr. Kristen Gorman and the Palmer Station, Antarctica LTER, a member of the Long Term Ecological Research Network.
The dataset consists of 5 columns.
| Column | Description |
|---|---|
| culmen_length_mm | culmen length (mm) |
| culmen_depth_mm | culmen depth (mm) |
| flipper_length_mm | flipper length (mm) |
| body_mass_g | body mass (g) |
| sex | penguin sex |
Unfortunately, they have not been able to record the species of penguin, but they know that there are at least three species that are native to the region: Adelie, Chinstrap, and Gentoo. Your task is to apply your data science skills to help them identify groups in the dataset!
# Import Required Packages
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# Loading and examining the dataset
penguins_df = pd.read_csv("penguins.csv")
penguins_df.head()penguins_df.head()penguins_df.info()penguins_df = pd.get_dummies(penguins_df, columns=['sex'], drop_first=True)df = pd.DataFrame(penguins_df)
scaler = StandardScaler()
df=scaler.fit_transform(df)inertia = []
for k in range(1,10):
kmeans = KMeans(n_clusters=k, random_state=42)
kmeans.fit(df)
inertia.append(kmeans.inertia_)
plt.plot(range(1, 10), inertia, marker='o')
plt.xlabel('Number of Clusters(k)')
plt.ylabel('Inertia')
plt.title('Elbow Method')
plt.showkmeans = KMeans(n_clusters=3, random_state=42)
kmeans.fit(df)
labels = kmeans.labels_penguins_df['Cluster'] = labelsfrom sklearn.decomposition import PCA
pca = PCA(n_components=2)
reduced_data = pca.fit_transform(df)plt.scatter(reduced_data[:, 0], reduced_data[:, 1], c=labels, cmap='viridis', s=50)
plt.xlabel('PCA Component 1')
plt.ylabel('PCA Component 2')
plt.title('K-Means Clustering Visualization')
plt.show()cluster_summary = penguins_df.groupby('Cluster').mean()
print(cluster_summary)cluster_summary = penguins_df.groupby('Cluster').mean()
print(cluster_summary)
Hidden output