Skip to content
Create a Word Cloud
  • AI Chat
  • Code
  • Report
  • Create a Word Cloud

    Create a Word Cloud to visualize the most frequent words in a text file. Word Clouds are also known as Tag Clouds and are a useful tool for initial visual exploration of text data in any NLP project. Word Clouds are typically used to depict keyword metadata on websites, or to visualize free form text. Important words are highlighted with a bigger font or stronger color.

    %%capture 
    !pip install wordcloud
    # Load packages
    import matplotlib.pyplot as plt
    from wordcloud import WordCloud, STOPWORDS
    # Upload your data as a .txt file and load it as a data frame 
    text = open('biden.txt', 
                mode='r', 
                encoding='utf-8') \
                .read().replace('\n','')
    text[:1000]
    # change the value to black
    def black_color_func(word, font_size, position,orientation,random_state=None, **kwargs):
        return("hsl(0,100%, 1%)")
    
    wc = WordCloud(background_color="white",           # select background color
                   width=3000,                         # set wight
                   height=2000,                        # set height
                   max_words=500).generate(text)       # set max amount of words
    
    wc.recolor(color_func = black_color_func)          # set the word color to black
    plt.figure(figsize=[15,10])                        # set the figsize
    plt.imshow(wc, interpolation="bilinear")           # plot the wordcloud
    plt.axis("off")                                    # remove plot axes
    plt.savefig('wordcloud.png')                       # save as png