Skip to content
1 hidden cell
Intermediate Python
Intermediate Python
Run the hidden code cell below to import the data used in this course.
1 hidden cell
Take Notes
Add notes about the concepts you've learned and code cells with code you want to keep.
Add your notes here
# Add your code snippets here
#pour les listes :# house list of lists
house = [["hallway", 11.25],
["kitchen", 18.0],
["living room", 20.0],
["bedroom", 10.75],
["bathroom", 9.50]]
# Build a for loop from scratch
for h in house :
print( "The " +str(h[0])+ " is " +str(h[1])+ " sqm." )#Pour les dict # Definition of dictionary
europe = {'spain':'madrid', 'france':'paris', 'germany':'berlin',
'norway':'oslo', 'italy':'rome', 'poland':'warsaw', 'austria':'vienna' }
# Iterate over europe
for key, value in europe.items():
print("the capital of " +key+ " is " +value)# for Data frame
for lab, row in cars.iterrows():
print(lab)
print(row)# Import cars data
import pandas as pd
cars = pd.read_csv('cars.csv', index_col = 0)
# Adapt for loop
for lab, row in cars.iterrows() :
print(lab+ ": "+ str(row['cars_per_cap']))
#####Resultat
US: 809
AUS: 731
JPN: 588
IN: 18
RU: 200
MOR: 70
EG: 45# Import cars data
import pandas as pd
cars = pd.read_csv('cars.csv', index_col = 0)
# Use .iterrows()
for lab, row in cars.iterrows() :
cars.loc[lab, "COUNTRY"] = row["country"].upper()
# Use .apply(str.upper)
cars["COUNTRY"] = cars["country"].apply(str.upper)
print ( cars )Explore Datasets
Use the DataFrames imported in the first cell to explore the data and practice your skills!
- Create a loop that iterates through the
bricsDataFrame and prints "The population of {country} is {population} million!". - Create a histogram of the life expectancies for countries in Africa in the
gapminderDataFrame. Make sure your plot has a title, axis labels, and has an appropriate number of bins. - Simulate 10 rolls of two six-sided dice. If the two dice add up to 7 or 11, print "A win!". If the two dice add up to 2, 3, or 12, print "A loss!". If the two dice add up to any other number, print "Roll again!".
#Jeu de dés: lancé au sort un dé avancé ou reculé d'un pas ou soit quand la face du dé est egale à 6 avancé aléatoirement
# NumPy is imported, seed is set
# Starting step
step = 50
# Roll the dice
dice = np.random.randint(1,7)
# Finish the control construct
if dice <= 2 :
step = step - 1
elif dice >2 and dice <=5 :
step = step + 1
else :
step = step + np.random.randint(1,7)
# Print out dice and step
print(dice)
print(step)Make a list random_walk that contains the first step, which is the integer 0. Finish the for loop: The loop should run 100 times. On each iteration, set step equal to the last element in the random_walk list. You can use the index -1 for this. Next, let the if-elif-else construct update step for you. The code that appends step to random_walk is already coded. Print out random_walk.
# NumPy is imported, seed is set
# Initialize random_walk
random_walk = [0]
# Complete the ___
for x in range(100) :
# Set step: last element in random_walk
step = random_walk[-1]
# Roll the dice
dice = np.random.randint(1,7)
# Determine next step
if dice <= 2:
# Replace below: use max to make sure step can't go below 0
step = max(0, step - 1)
elif dice <= 5:
step = step + 1
else:
step = step + np.random.randint(1,7)
# append next_step to random_walk
random_walk.append(step)
# Print random_walk
print(random_walk)