Skip to content

Intermediate Python

Run the hidden code cell below to import the data used in this course.

# Import the course packages
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# Import the two datasets
gapminder = pd.read_csv("datasets/gapminder.csv")
brics = pd.read_csv("datasets/brics.csv")

Take Notes

Add notes about the concepts you've learned and code cells with code you want to keep.

Add your notes here

# Add your code snippets here


#index codes
#x.index('y')

#numpy codes
#np.array()

#Matplotlib codes
#plt.plot()

#plt.scatter()
 #plt.xscale()
 #plt.yscale()
 #plt.title()
 #plt.xticks()
 #plt.text()
 #plt.grid()

#plt.hist()
#plt.clf()

#plt.show()

#dictionaries

#a = {x:x1, y:y1,...}
#a.keys()

# Pandas

# x = pd.DataFrame(y)
# x = pd.read_csv('y')

#imprimir una columna como Panda Series
# print(x['y'])

#Imprimir una columna como Panda DataFrame
# print(x[['y']])

#imprimir varias columnas como pd DataFrame
#print(x[['y','z']])

#imprimir usando iloc y loc
#print(x.loc[:, ['y','z']])

#print(x.iloc[:,[1:3]])

#OPERADORES BOOLEANOS PARA NUMPY

#np.logical_or()
#np.logical_and()
#np.logical_not()

# IF, ELIF, ELSE

# if 'x' :
#  then 'y'
# elif 'x' :
# then 'a':
# else :
# 'b'

#WHILE AND LOOP

#while 'x' = 1:
# print('y')
# x= x+1

#for 'x' in 'y':
#print('x')

#IMPRIMIR CON IN ENUMERATE

# for index, 'x' in enumerate('y')
# print(a)

#LOOP EN DICTIONARIOS

# for 'x','y' in 'a'.items():
# print('a')

#Loop en Numpy Array
# for 'x' in np.nditer('y') :
# print('a')

#LOOP en DataFrames

# for lab, row in 'x'.iterrows():

# print(lab)
# print(row)

# USANDO APPLY

# 'x'['y'] = 'x'['z'].apply('a')
# print('x')

#numeros RANDOM

# np.seed()
# np.random.rand()


Explore Datasets

Use the DataFrames imported in the first cell to explore the data and practice your skills!

  • Create a loop that iterates through the brics DataFrame and prints "The population of {country} is {population} million!".
  • Create a histogram of the life expectancies for countries in Africa in the gapminder DataFrame. Make sure your plot has a title, axis labels, and has an appropriate number of bins.
  • Simulate 10 rolls of two six-sided dice. If the two dice add up to 7 or 11, print "A win!". If the two dice add up to 2, 3, or 12, print "A loss!". If the two dice add up to any other number, print "Roll again!".