Skip to content
Introduction to Data Visualization with Matplotlib
Introduction to Data Visualization with Matplotlib
Run the hidden code cell below to import the data used in this course.
# Importing the course packages
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Importing the course datasets
climate_change = pd.read_csv('datasets/climate_change.csv', parse_dates=["date"], index_col="date")
medals = pd.read_csv('datasets/medals_by_country_2016.csv', index_col=0)
summer_2016 = pd.read_csv('datasets/summer2016.csv')
austin_weather = pd.read_csv("datasets/austin_weather.csv", index_col="DATE")
weather = pd.read_csv("datasets/seattle_weather.csv", index_col="DATE")
# Some pre-processing on the weather datasets, including adding a month column
seattle_weather = weather[weather["STATION"] == "USW00094290"]
month = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
seattle_weather["MONTH"] = month
austin_weather["MONTH"] = monthTake Notes
Add notes about the concepts you've learned and code cells with code you want to keep.
Add your notes here
# Add your code snippets hereExplore Datasets
Use the DataFrames imported in the first cell to explore the data and practice your skills!
- Using
austin_weatherandseattle_weather, create a Figure with an array of two Axes objects that share a y-axis range (MONTHSin this case). Plot Seattle's and Austin'sMLY-TAVG-NORMAL(for average temperature) in the top Axes and plot theirMLY-PRCP-NORMAL(for average precipitation) in the bottom axes. The cities should have different colors and the line style should be different between precipitation and temperature. Make sure to label your viz! - Using
climate_change, create a twin Axes object with the shared x-axis as time. There should be two lines of different colors not sharing a y-axis:co2andrelative_temp. Only include dates from the 2000s and annotate the first date at whichco2exceeded 400. - Create a scatter plot from
medalscomparing the number of Gold medals vs the number of Silver medals with each point labeled with the country name. - Explore if the distribution of
Agevaries in different sports by creating histograms fromsummer_2016. - Try out the different Matplotlib styles available and save your visualizations as a PNG file.