Skip to content
1 hidden cell
09 - Introduction to Data Visualization with Seaborn
09 - Introduction to Data Visualization with Seaborn
Run the hidden code cell below to import the data used in this course.
1 hidden cell
Introduction to Seaborn
Making a scatter plot with lists
# Import Matplotlib and Seaborn
import matplotlib.pyplot as plt
import seaborn as sns
# Change this scatter plot to have percent literate on the y-axis
sns.scatterplot(x=gdp, y=phones)
# Show plot
plt.show()
# Change this scatter plot to have percent literate on the y-axis
sns.scatterplot(x=gdp, y=percent_literate)Making a count plot with a list
# Import Matplotlib and Seaborn
import matplotlib.pyplot as plt
import seaborn as sns
# Create count plot with region on the y-axis
sns.countplot(y=region)
# Show plot
plt.show()"Tidy" vs. "untidy" data
# Import pandas
import pandas as pd
# Create a DataFrame from csv file
df = pd.read_csv(csv_filepath)
# Print the head of df
print(df.head())Making a count plot with a DataFrame
# Import Matplotlib, pandas, and Seaborn
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
# Create a DataFrame from csv file
df = pd.read_csv(csv_filepath)
# Create a count plot with "Spiders" on the x-axis
sns.countplot(x='Spiders', data=df)
# Display the plot
plt.show()Hue and scatter plots
# Import Matplotlib and Seaborn
import matplotlib.pyplot as plt
import seaborn as sns
# Create a scatter plot of absences vs. final grade
sns.scatterplot(x='absences', y='G3', data=student_data, hue='location')
# Show plot
plt.show()
# Change the legend order in the scatter plot
sns.scatterplot(x="absences", y="G3", data=student_data, hue="location", hue_order=["Rural", "Urban"])Hue and count plots
# Import Matplotlib and Seaborn
import matplotlib.pyplot as plt
import seaborn as sns
# Create a dictionary mapping subgroup values to colors
palette_colors = {'Rural': "green", 'Urban': "blue"}
# Create a count plot of school with location subgroups
sns.countplot(x='school',
data=student_data,
hue='location',
palette=palette_colors)
# Display plot
plt.show()