Skip to content
Project: Building an E-Commerce Clothing Classifier Model
Fashion Forward is a new AI-based e-commerce clothing retailer. They want to use image classification to automatically categorize new product listings, making it easier for customers to find what they're looking for. It will also assist in inventory management by quickly sorting items.
As a data scientist tasked with implementing a garment classifier, your primary objective is to develop a machine learning model capable of accurately categorizing images of clothing items into distinct garment types such as shirts, trousers, shoes, etc.
# Run the cells below firstimport numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchmetrics import Accuracy, Precision, Recall
from tqdm import tqdm# Load datasets
from torchvision import datasets
import torchvision.transforms as transforms
train_data = datasets.FashionMNIST(root='./data', train=True, download=True, transform=transforms.ToTensor())
test_data = datasets.FashionMNIST(root='./data', train=False, download=True, transform=transforms.ToTensor())# Start coding here
# Use as many cells as you needChecking the image data
import matplotlib.pyplot as pltimage, label = next(iter(train_data))image.shapenum_classes = len(train_data.classes)
print(num_classes)image_size = train_data[0][0].shapeimage_sizeimage = image.permute(1, 2, 0)type(label)