Skip to content
caretpractice
library(caret)
install.packages("mlbench")
library(mlbench)
data(Sonar)# Corrected code
head(Sonar)# Make a custom trainControl
myControl <- trainControl(
method = "cv",
number = 10,
summaryFunction = twoClassSummary,
classProbs = TRUE, # <- Super important!
verboseIter = TRUE
)install.packages("glmnet")
library(glmnet)
model <- train(
Class ~ .,
data = Sonar,
tuneGrid = expand.grid(
alpha = 0:1,
lambda = seq(0.0001, 1, length = 20)
),
method = "glmnet",
trControl = myControl
)
model
max(model[["results"]][["ROC"]])
plot(model)predict(model, Sonar)