Skip to content
Project: Clustering Antarctic Penguin Species
source: @allison_horst https://github.com/allisonhorst/penguins
You have been asked to support a team of researchers who have been collecting data about penguins in Antartica! The data is available in csv-Format as penguins.csv
Origin of this data : Data were collected and made available by Dr. Kristen Gorman and the Palmer Station, Antarctica LTER, a member of the Long Term Ecological Research Network.
The dataset consists of 5 columns.
| Column | Description |
|---|---|
| culmen_length_mm | culmen length (mm) |
| culmen_depth_mm | culmen depth (mm) |
| flipper_length_mm | flipper length (mm) |
| body_mass_g | body mass (g) |
| sex | penguin sex |
Unfortunately, they have not been able to record the species of penguin, but they know that there are at least three species that are native to the region: Adelie, Chinstrap, and Gentoo. Your task is to apply your data science skills to help them identify groups in the dataset!
# Import Required Packages
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# Loading and examining the dataset
penguins_df = pd.read_csv("penguins.csv")
penguins_df.head()
# Create dummy variable for categorical feature then drop the original column
penguin_df = pd.get_dummies(penguins_df, drop_first=True, dtype=int)
# Scaling the dataset for clustering
scaler = StandardScaler()
X = scaler.fit_transform(penguin_df)
penguins_preprocessed = pd.DataFrame(data=X, columns=penguins_df.columns)
penguins_preprocessed.head(5)
# Detect the optimal number of clusters to use for K-means clustering
inertia = []
for k in range(1, 10): # Elbow Analysis
kmeans = KMeans(n_clusters=k, random_state=42)
kmeans.fit(penguins_preprocessed)
inertia.append(kmeans.inertia_)
# Visualize the list of inertia values to determine the optimal no. of clusters
plt.plot(range(1, 10), inertia, '-o')
plt.xlabel('Number of clusters, k')
plt.ylabel('Inertia')
plt.xticks(range(1, 10))
plt.title('Elbow Method')
# Optional, highlight optimal k by adding a marker and annotation on the existing elbow plot
optimal_k = 4
plt.plot(optimal_k, inertia[optimal_k - 1], 'ro') # Red circle marker
plt.annotate(f'Optimal k = {optimal_k}',
xy=(optimal_k, inertia[optimal_k - 1]),
xytext=(optimal_k + 0.5, inertia[optimal_k - 1] + 100),
arrowprops=dict(facecolor='black', shrink=0.05),
fontsize=10,
color='black')
plt.grid(True)
plt.show()
# Run the k-means clustering algorithm
kmeans = KMeans(n_clusters=optimal_k, random_state=42)
kmeans.fit(penguins_preprocessed)
penguins_df['label'] = kmeans.labels_
# Visualize the k-means clustering using scatterplot
plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_)
plt.xlabel('Cluster')
plt.ylabel('culmen_length_mm')
plt.title(f'K-means Clustering (K={optimal_k})')
plt.show()
# Create the final "stat_penguins" DataFrame
numeric_columns = [
col for col in penguins_df.select_dtypes(include='number').columns
if penguins_df[col].nunique() > 2
]
penguins_df['labels'] = kmeans.labels_
stat_penguins = pd.DataFrame(penguins_df.groupby('labels')
[numeric_columns].mean())
stat_penguins