Skip to content
New Workbook
Sign up
Supervised Learning with scikit-learn

Supervised Learning with scikit-learn

Run the hidden code cell below to import the data used in this course.

Take Notes

Add notes about the concepts you've learned and code cells with code you want to keep.

Add your notes here

# Add your code snippets here
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
cols = ["fLength", "fWidth", "fSize", "fConc", "fConc1", "fAsym", "fM3Long", "fM3Trans", "fAlpha", "fDist", "class"]
df = pd.read_csv('magic04.data', names=cols)
df.head()
df['class'] = (df['class']  == 'g').astype(int)
df.head()
for label in cols[:-1]:
  plt.hist(df[df["class"]==1][label], color='blue', label='gamma', alpha=0.7, density=True)
  plt.hist(df[df["class"]==0][label], color='red', label='hadron', alpha=0.7, density=True)
  plt.title(label)
  plt.ylabel("Probability")
  plt.xlabel(label)
  plt.legend()
  plt.show()