Skip to content
Introduction to Importing Data in Python
Run the hidden code cell below to import the data used in this course.
# Import the course packages
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import scipy.io
import h5py
from sas7bdat import SAS7BDAT
from sqlalchemy import create_engine
import pickle
# Import the course datasets
titanic = pd.read_csv("datasets/titanic_sub.csv")
battledeath_2002 = pd.ExcelFile("datasets/battledeath.xlsx").parse("2002")
engine = create_engine('sqlite:///datasets/Chinook.sqlite')
con = engine.connect()
rs = con.execute('SELECT * FROM Album')
chinook = pd.DataFrame(rs.fetchall())
seaslug = np.loadtxt("datasets/seaslug.txt", delimiter="\t", dtype=str)
Explore Datasets
Try importing the remaining files to explore the data and practice your skills!
datasets/disarea.dta
datasets/ja_data2.mat
datasets/L-L1_LOSC_4_V1-1126259446-32.hdf5
datasets/mnist_kaggle_some_rows.csv
datasets/sales.sas7bdat
Take Notes
Add notes about the concepts you've learned and code cells with code you want to keep.
Reading a text file
filename = 'huck_finn.txt'
file = open(filename, mode='r') # 'r' is to read
text = file.read()
file.close()
Hidden output
Print a text file
print(text)
Context manager with
with open('huck_finn.txt', 'r') as file:
print(file.read())
# Read & print the first 3 lines
with open('moby_dick.txt') as file:
print(file.readline())
print(file.readline())
print(file.readline())
Importing flat files using NumPy (only numerical data)
import numpy as np
filename = 'MNIST.txt'
data = np.loadtxt(filename, delimiter=',')
data
Customizing your NumPy import
import numpy as np
filename = 'MNIST_header.txt'
data = np.loadtxt(filename, delimiter=',', skiprows=1)
print(data)
import numpy as np
filename = 'MNIST_header.txt'
data = np.loadtxt(filename, delimiter=',', skiprows=1, usecols=[0, 2])
print(data)