Skip to content
Word Cloud
Create a Word Cloud
Create a Word Cloud to visualize the most frequent words in a text file. Word Clouds are also known as Tag Clouds and are a useful tool for initial visual exploration of text data in any NLP project. Word Clouds are typically used to depict keyword metadata on websites, or to visualize free form text. Important words are highlighted with a bigger font or stronger color.
%%capture
!pip install wordcloud
# Load packages
import matplotlib.pyplot as plt
from wordcloud import WordCloud, STOPWORDS
# Upload your data as a .txt file and load it as a data frame
text = open('End_of_the_World_REM.txt',
mode='r',
encoding='utf-8') \
.read().replace('\n',' ')
text[:1000]
# change the value to black
def black_color_func(word, font_size, position,orientation,random_state=None, **kwargs):
return("hsl(0,100%, 1%)")
wc = WordCloud(background_color="white", # select background color
width=3000, # set wight
height=2000, # set height
max_words=1000).generate(text) # set max amount of words
wc.recolor(color_func = black_color_func) # set the word color to black
plt.figure(figsize=[15,10]) # set the figsize
plt.imshow(wc, interpolation="bilinear") # plot the wordcloud
plt.axis("off") # remove plot axes
plt.savefig('wordcloud.png') # save as png