Skip to content
PCAmix
install.packages('PCAmixdata')## Import library
library(PCAmixdata)## Import data
df <- read.csv('https://github.com/nchelaru/data-prep/raw/master/telco_cleaned_renamed.csv')## Split mixed dataset into quantitative and qualitative variables
## For now excluding the target variable "Churn", which will be added later as a supplementary variable
split <- splitmix(df[1:18]) ## PCA
res.pcamix <- PCAmix(X.quanti=split$X.quanti,
X.quali=split$X.quali,
rename.level=TRUE,
graph=FALSE,
ndim=3)## Inspect principal components
Proportion = res.pcamix$eig[1:5,2]
barplot(Proportion, main="Scree Plot",
xlab="Dimensions", ylab="Percentage of explained variance",ylim = c(0, 10))a<- rbind(res.pcamix$quanti$contrib.pct, res.pcamix$quali$contrib.pct)b <- sort(a[1:18,1])contributions <- b[14:18]cc <- data.frame(contributions)cccc$variables <- row.names(cc)#install ggplot2 and all dependencies
install.packages("ggplot2", dependencies=TRUE)library(ggplot2)