Skip to content
Project: Clustering Antarctic Penguin Species
source: @allison_horst https://github.com/allisonhorst/penguins
You have been asked to support a team of researchers who have been collecting data about penguins in Antartica! The data is available in csv-Format as penguins.csv
Origin of this data : Data were collected and made available by Dr. Kristen Gorman and the Palmer Station, Antarctica LTER, a member of the Long Term Ecological Research Network.
The dataset consists of 5 columns.
| Column | Description |
|---|---|
| culmen_length_mm | culmen length (mm) |
| culmen_depth_mm | culmen depth (mm) |
| flipper_length_mm | flipper length (mm) |
| body_mass_g | body mass (g) |
| sex | penguin sex |
Unfortunately, they have not been able to record the species of penguin, but they know that there are at least three species that are native to the region: Adelie, Chinstrap, and Gentoo. Your task is to apply your data science skills to help them identify groups in the dataset!
# Import Required Packages
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# Loading and examining the dataset
penguins_df = pd.read_csv("penguins.csv")
penguins_df.head()penguins_df.sex=penguins_df.sex.astype("category")
penguins_df["sex_codes"] = penguins_df.sex.cat.codes
penguins_df.head()from sklearn.preprocessing import StandardScaler
X = penguins_df.select_dtypes("float")
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X) # numpy array
X_scaled_df = pd.DataFrame(X_scaled, columns=X.columns, index=X.index) # pandas df
X_scaled_df["sex_codes"] = penguins_df.sex_codes
X_scaled_df.head()# Perform KMeans clustering with 3 clusters on X_scaled_df
kmeans = KMeans(n_clusters=3, random_state=42)
X_scaled_df["cluster"] = kmeans.fit_predict(X_scaled_df)
X_scaled_df.head()penguins_df["cluster"] = X_scaled_df.cluster
stat_penguins = penguins_df.groupby("cluster", as_index=False).agg("mean")
stat_penguinsimport seaborn as sns
# Use pairplot to visualize clusters in X_scaled_df
sns.pairplot(
penguins_df,
vars=["culmen_length_mm", "culmen_depth_mm", "flipper_length_mm", "body_mass_g"],
hue="cluster",
palette="Set1",
diag_kind="kde",
plot_kws={"alpha": 0.7}
)
plt.suptitle("Pairplot of Scaled Features Colored by Cluster", y=1.02)
plt.show()