Skip to content
K_Means: Clustering Antarctic Penguin Species
source: @allison_horst https://github.com/allisonhorst/penguins
You have been asked to support a team of researchers who have been collecting data about penguins in Antartica! The data is available in csv-Format as penguins.csv
Origin of this data : Data were collected and made available by Dr. Kristen Gorman and the Palmer Station, Antarctica LTER, a member of the Long Term Ecological Research Network.
The dataset consists of 5 columns.
Column | Description |
---|---|
culmen_length_mm | culmen length (mm) |
culmen_depth_mm | culmen depth (mm) |
flipper_length_mm | flipper length (mm) |
body_mass_g | body mass (g) |
sex | penguin sex |
Unfortunately, they have not been able to record the species of penguin, but they know that there are at least three species that are native to the region: Adelie, Chinstrap, and Gentoo. Your task is to apply your data science skills to help them identify groups in the dataset!
# Import Required Packages
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# Loading and examining the dataset
penguins_df = pd.read_csv("penguins.csv")
penguins_df.head()
# columns
penguins_df.info()
# DUmmy variables
penguins_df = pd.get_dummies(penguins_df, dtype='int')
print(penguins_df)
print(penguins_df.info())
# Exploring for variance
print(penguins_df.var())
# Scaling the data
scaler = StandardScaler()
penguins_scaled = pd.DataFrame(scaler.fit_transform(penguins_df), columns=penguins_df.columns)
print(penguins_scaled.var())
# Elbow Analysis
inertia = []
for k in range(1, 10):
kmeans = KMeans(n_clusters=k, random_state=42).fit(penguins_scaled)
inertia.append(kmeans.inertia_)
# Plotting Inertias
plt.plot(range(1, 10), inertia, marker='o')
plt.xlabel('Number of clusters')
plt.ylabel('Inertia')
plt.title('Elbow Method')
plt.show()
n_clusters = 4
# Run KMeans Algorithm
kmeans = KMeans(n_clusters=n_clusters, random_state=42).fit(penguins_scaled)
penguins_df['label'] = kmeans.labels_
# Visualize Clusters
plt.scatter(penguins_df['label'], penguins_df['culmen_length_mm'], c=kmeans.labels_, cmap='viridis')
plt.xlabel('Cluster')
plt.ylabel('culmen_length_mm')
plt.xticks(range(int(penguins_df['label'].min()), int(penguins_df['label'].max()) + 1))
plt.title(f'K-Means Clustering (K={n_clusters})')
plt.show()
# Stat_penguins DataFrame
numeric_columns = ['culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm', 'label']
stat_penguins = penguins_df[numeric_columns].groupby('label').mean()
stat_penguins