Skip to content

Intermediate Python

Run the hidden code cell below to import the data used in this course.


1 hidden cell

Take Notes

Add notes about the concepts you've learned and code cells with code you want to keep.

Add your notes here

# Import cars data
import pandas as pd
cars = pd.read_csv('cars.csv', index_col = 0)

# Print out drives_right column as Series
print(cars.loc[:, "drives_right"])

# Print out drives_right column as DataFrame
print(cars.loc[:, ["drives_right"]])

# Print out cars_per_cap and drives_right as DataFrame
print(cars.loc[:, ["cars_per_cap", "drives_right"]])
-------------------------------
# Create arrays
import numpy as np
my_house = np.array([18.0, 20.0, 10.75, 9.50])
your_house = np.array([14.0, 24.0, 14.25, 9.0])

# my_house greater than 18.5 or smaller than 10
print(np.logical_or(my_house > 18.5, my_house < 10))

# Both my_house and your_house smaller than 11
print(np.logical_and(my_house < 11, your_house < 11))
_______________________________

Explore Datasets

Use the DataFrames imported in the first cell to explore the data and practice your skills!

  • Create a loop that iterates through the brics DataFrame and prints "The population of {country} is {population} million!".
  • Create a histogram of the life expectancies for countries in Africa in the gapminder DataFrame. Make sure your plot has a title, axis labels, and has an appropriate number of bins.
  • Simulate 10 rolls of two six-sided dice. If the two dice add up to 7 or 11, print "A win!". If the two dice add up to 2, 3, or 12, print "A loss!". If the two dice add up to any other number, print "Roll again!".