this is the nav!
Data Manipulation with pandas
• AI Chat
• Code
• Report
• ## .mfe-app-workspace-kj242g{position:absolute;top:-8px;}.mfe-app-workspace-11ezf91{display:inline-block;}.mfe-app-workspace-11ezf91:hover .Anchor__copyLink{visibility:visible;}Data Manipulation with pandas

Run the hidden code cell below to import the data used in this course.

```.mfe-app-workspace-11z5vno{font-family:JetBrainsMonoNL,Menlo,Monaco,'Courier New',monospace;font-size:13px;line-height:20px;}```# Import the course packages
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# Import the four datasets

### Take Notes

Add notes about the concepts you've learned and code cells with code you want to keep.

Add your notes here Pandas allows to rapidly caluclate some basic statistics

``````# Add your code snippets here
# Print the mean of weekly_sales
print(walmart['weekly_sales'].mean())

# Print the median of weekly_sales
print(walmart['weekly_sales'].median())``````

The .agg() method allows you to apply your own custom functions to a DataFrame, as well as apply functions to more than one column of a DataFrame at once, making your aggregations super-efficient. For example,

df['column'].agg(function)

If the function is to be applied to more columns then Update to print IQR of temperature_c, fuel_price_usd_per_l, & unemployment `print(sales[["temperature_c",'fuel_price_usd_per_l', 'unemployment']].agg(iqr))`

Important feature is groupby

'df.groupby('groupname')'

### Explore Datasets

Use the DataFrames imported in the first cell to explore the data and practice your skills!

• Print the highest weekly sales for each `department` in the `walmart` DataFrame. Limit your results to the top five departments, in descending order. If you're stuck, try reviewing this video.
• What was the total `nb_sold` of organic avocados in 2017 in the `avocado` DataFrame? If you're stuck, try reviewing this video.
• Create a bar plot of the total number of homeless people by region in the `homelessness` DataFrame. Order the bars in descending order. Bonus: create a horizontal bar chart. If you're stuck, try reviewing this video.
• Create a line plot with two lines representing the temperatures in Toronto and Rome. Make sure to properly label your plot. Bonus: add a legend for the two lines. If you're stuck, try reviewing this video.