Skip to content
Course Notes: Data Types for Data Science in Python
  • AI Chat
  • Code
  • Report
  • # Rewrite the for loop to use enumerate
    indexed_names = []
    for i,name in enumerate(names):
        index_name = (i,name)
        indexed_names.append(index_name) 
    print(indexed_names)
    
    # Rewrite the above for loop using list comprehension
    indexed_names_comp = [(i,name) for i,name in enumerate(names)]
    print(indexed_names_comp)
    
    # Unpack an enumerate object with a starting index of one
    indexed_names_unpack = [*enumerate(names, 1)]
    print(indexed_names_unpack)
    # Create the empty list: labeled_entries
    labeled_entries = []
    
    # Iterate over the weight_log entries
    for species, sex, flipper_length, body_mass in weight_log:
        # Append a new WeightEntry instance to labeled_entries
        labeled_entries.append(WeightEntry(species, body_mass, flipper_length, sex))
        
    # Print a list of the first 5 mass_to_flipper_length_ratio values
    print([entry.mass_to_flipper_length_ratio for entry in labeled_entries[:5]])

    Import dataclass

    from dataclasses import dataclass

    @dataclass class WeightEntry: # Define the fields on the class species: str sex: int body_mass: int flipper_length: str

    # Define a property that returns the body_mass / flipper_length @property def mass_to_flipper_length_ratio(self): return self.body_mass / self.flipper_length
    # Write and run code here
    # Import dataclass
    from dataclasses import dataclass
    
    @dataclass
    class WeightEntry:
        # Define the fields on the class
        species: str
        sex: int
        body_mass: int
        flipper_length: str
            
        # Define a property that returns the body_mass / flipper_length
        @property
        def mass_to_flipper_length_ratio(self):
            return self.body_mass / self.flipper_length