Skip to content
# Pre-defined lists
names = ['United States', 'Australia', 'Japan', 'India', 'Russia', 'Morocco', 'Egypt']
dr = [True, False, False, False, True, True, True]
cpc = [809, 731, 588, 18, 200, 70, 45]
# Import pandas as pd
import pandas as pd
# Create dictionary my_dict with three key:value pairs: my_dict
my_dict = {"country":names, "drives_right":dr, "cars_per_cap":cpc}
# Build a DataFrame cars from my_dict: cars
cars = pd.DataFrame (my_dict)
# Print cars
print (cars)
Intermediate Python
Run the hidden code cell below to import the data used in this course.
# Dictionary of dictionaries
europe = { 'spain': { 'capital':'madrid', 'population':46.77 },
'france': { 'capital':'paris', 'population':66.03 },
'germany': { 'capital':'berlin', 'population':80.62 },
'norway': { 'capital':'oslo', 'population':5.084 } }
# Print out the capital of France
print (europe ["france"] ["capital"])
# Create sub-dictionary data
data = {"capital":"rome", "population":59.83}
# Add data to europe under key 'italy'
europe ["italy"] = data
# Print europe
print (europe)
# Definition of dictionary
europe = {'spain':'madrid', 'france':'paris', 'germany':'berlin', 'norway':'oslo' }
# Print out the keys in europe
print (europe.keys())
# Print out value that belongs to key 'norway'
print (europe["norway"])
# Definition of dictionary
europe = {'spain':'madrid', 'france':'paris', 'germany':'berlin', 'norway':'oslo' }
# Add italy to europe
europe ["italy"] = "rome"
# Print out italy in europe
print ("italy" in europe)
# Add poland to europe
europe ["poland"] = "warsaw"
# Print europe
print (europe)
# Definition of dictionary
europe = {'spain':'madrid', 'france':'paris', 'germany':'bonn',
'norway':'oslo', 'italy':'rome', 'poland':'warsaw',
'australia':'vienna' }
# Update capital of germany
europe ["germany"] = "berlin"
# Remove australia
del (europe ["australia"])
# Print europe
print (europe)
Take Notes
Add notes about the concepts you've learned and code cells with code you want to keep.
# Import numpy as np
import numpy as np
# Store pop as a numpy array: np_pop
np_pop = np.array (pop)
# Double np_pop
np_pop = np_pop *2
# Update: set s argument to np_pop
plt.scatter(gdp_cap, life_exp, s = np_pop)
# Previous customizations
plt.xscale('log')
plt.xlabel('GDP per Capita [in USD]')
plt.ylabel('Life Expectancy [in years]')
plt.title('World Development in 2007')
plt.xticks([1000, 10000, 100000],['1k', '10k', '100k'])
# Display the plot
plt.show()
Add your notes here
# Add your code snippets here
Explore Datasets
Use the DataFrames imported in the first cell to explore the data and practice your skills!
- Create a loop that iterates through the
brics
DataFrame and prints "The population of {country} is {population} million!". - Create a histogram of the life expectancies for countries in Africa in the
gapminder
DataFrame. Make sure your plot has a title, axis labels, and has an appropriate number of bins. - Simulate 10 rolls of two six-sided dice. If the two dice add up to 7 or 11, print "A win!". If the two dice add up to 2, 3, or 12, print "A loss!". If the two dice add up to any other number, print "Roll again!".