Skip to content
DEAD_PEOPLE
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import zipfile
import urllib.request
import os
%matplotlib inline
# url ='https://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/5468/39/24/1/zgony_wedlug_tygodni_w_polsce_2023_2.zip'
url = "https://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/5468/39/25/1/zgony_wedlug_tygodni_w_polsce_2024.zip"
import urllib.request
# downloading zipfile from url and save it as file.zip
urllib.request.urlretrieve(url, 'file.zip')
# extracting files
with zipfile.ZipFile('file.zip', 'r') as zip_ref:
zip_ref.extractall()
# Get the list of all files and directories
path = "./Zgony wedêug tygodni w Polsce 2024/"
dir_list = os.listdir(path)
dir_list = pd.DataFrame(dir_list,columns=['nazwa'])
dir_list = dir_list.sort_values(by="nazwa")
dir_list
file = "Zgony wedêug tygodni w Polsce 2024/"
def get_data(file, region='Polska'):
#''' getting data from spec. year and region '''
#dropping first 6 rows while loading data
df = pd.read_excel(file,header=6)
#filltering via region
df_ = df[df['Unnamed: 2'] == region]
df_ = df_.reset_index()
df_columns = df.columns
df_ = df_.drop(columns=[df_columns[1], df_columns[2], 'index'])
df_t = df_.set_index('Unnamed: 0')
df_t = df_t.T
return df_t
#get_data(file+dir_list[-1])['Ogółem']
fig, ax = plt.subplots(figsize=(25, 13), layout='constrained')
plt.style.use("seaborn-v0_8-pastel")
fd=pd.DataFrame()
for i in dir_list.nazwa:
ax.plot(get_data(file+i)['Ogółem'], label=i)
#ax.plot(get_data(file+dir_list.nazwa[5])['Ogółem'], label=dir_list.nazwa[5])
ax.legend();
plt.show()
fd=pd.DataFrame()
data_full = pd.DataFrame()
for i in dir_list.nazwa:
fd[i] = get_data(file+i)['Ogółem']
columns_z = {v : str(v[-9:-5]) for v in fd.columns}
fd = fd.rename(columns=columns_z)
fig, ax = plt.subplots(figsize=(25, 13))
fd_sum = fd.sum()
fd_sum.plot(kind='bar', ax=ax)
ax.set_xticklabels(fd.columns, rotation=90)
# Add values to each bar
for i, v in enumerate(fd_sum):
ax.text(i, v + 0.1, str(v), ha='center', va='bottom')
plt.show()
fig, ax = plt.subplots(figsize=(25, 13))
plt.style.use('_mpl-gallery')
ax = fd.T.boxplot(meanline=True)
ax.set_xlabel("week number")
ax.set_ylabel('QTY DEAD PEOPLE')
ax.set_title('Zgony w latach 2000-2024 uśrednione w tygodniach')
ax.set_ylim(5000,17500)
ax.set_xlim(0,53)
ax = fd['2020'].T.plot(legend='2020',color='r')
ax = fd['2021'].T.plot(legend='2021',color='g')
ax = fd['2022'].T.plot(legend='2022', color='b')
ax = fd['2023'].T.plot(legend='2023', color='brown')
ax = fd['2024'].T.plot(legend='2024', color='black')
#ax.title('Zgony w latach 2000-2023 uśrednione w tygodniach')
plt.show()
fd
Run cancelled
# import pandas as pd
# import matplotlib.pyplot as plt
# rok= [x+2000 for x in range(24)]
# for dat in rok:
# df = pd.read_excel('zgony_wedlug_tygodni_2023/Zgony wedêug tygodni w Polsce_'+str(dat)+'.xlsx',header=6)
# df = df[df['Unnamed: 2']=='Polska']
# df = df.set_index('Unnamed: 0')
# df = df.drop(columns=['Unnamed: 1','Unnamed: 2'])
# df = df.T
# plt.style.use("seaborn-v0_8-pastel")
# fig, ax = plt.subplots(figsize=(25, 13))
# ax.set_ylim(0,17500)
# ax.set_xlim(0,53)
# ax.set_xlabel("week number")
# ax.set_ylabel('QTY DEAD PEOPLE')
# ax.set_title(str(dat))
# categories = df.columns
# categories = categories[1:]
# #stackplot kolejnych grup wiekowych
# ax = plt.stackplot(df.index, *[df[cat] for cat in categories], labels=categories)
# plt.legend()
# plt.savefig('dane'+str(dat))
# #plt.show()