Skip to content
Introduction to Data Visualization with Matplotlib
  • AI Chat
  • Code
  • Report
  • Introduction to Data Visualization with Matplotlib

    Run the hidden code cell below to import the data used in this course.

    # Importing the course packages
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    
    # Importing the course datasets 
    climate_change = pd.read_csv('datasets/climate_change.csv', parse_dates=["date"], index_col="date")
    medals = pd.read_csv('datasets/medals_by_country_2016.csv', index_col=0)
    summer_2016 = pd.read_csv('datasets/summer2016.csv')
    austin_weather = pd.read_csv("datasets/austin_weather.csv", index_col="DATE")
    weather = pd.read_csv("datasets/seattle_weather.csv", index_col="DATE")
    
    # Some pre-processing on the weather datasets, including adding a month column
    seattle_weather = weather[weather["STATION"] == "USW00094290"] 
    month = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"] 
    seattle_weather["MONTH"] = month 
    austin_weather["MONTH"] = month

    Take Notes

    Add notes about the concepts you've learned and code cells with code you want to keep.

    Add your notes here

    # Add your code snippets here

    Explore Datasets

    Use the DataFrames imported in the first cell to explore the data and practice your skills!

    • Using austin_weather and seattle_weather, create a Figure with an array of two Axes objects that share a y-axis range (MONTHS in this case). Plot Seattle's and Austin's MLY-TAVG-NORMAL (for average temperature) in the top Axes and plot their MLY-PRCP-NORMAL (for average precipitation) in the bottom axes. The cities should have different colors and the line style should be different between precipitation and temperature. Make sure to label your viz!
    • Using climate_change, create a twin Axes object with the shared x-axis as time. There should be two lines of different colors not sharing a y-axis: co2 and relative_temp. Only include dates from the 2000s and annotate the first date at which co2 exceeded 400.
    • Create a scatter plot from medals comparing the number of Gold medals vs the number of Silver medals with each point labeled with the country name.
    • Explore if the distribution of Age varies in different sports by creating histograms from summer_2016.
    • Try out the different Matplotlib styles available and save your visualizations as a PNG file.
    #1
    fig,ax=plt.subplots(2,1,sharey=True)
    ax[0].plot(austin_weather["MONTH"], austin_weather["MLY-TAVG-NORMAL"], color="blue", linestyle="-")
    ax[0].plot(seattle_weather["MONTH"], seattle_weather["MLY-TAVG-NORMAL"], color="red", linestyle="-")
    ax[0].set_title("Average Temperature")
    ax[0].set_xlabel("Month")
    ax[0].set_ylabel("Temperature (F)")
    
    ax[1].plot(austin_weather["MONTH"], austin_weather["MLY-PRCP-NORMAL"], color="blue", linestyle=":")
    ax[1].plot(seattle_weather["MONTH"], seattle_weather["MLY-PRCP-NORMAL"], color="red", linestyle=":")
    ax[1].set_title("Average Precipitation")
    ax[1].set_xlabel("Month")
    ax[1].set_ylabel("Precipitation (in)")
    
    plt.xlabel("Month")
    plt.ylabel("Temperature (F)")
    plt.title("Weather Data for Austin and Seattle")
    
    plt.show()
    
    climate_change
    #2
    # Create a figure with two axes that share a x-axis
    fig, axes = plt.subplots(2,1, sharex=True)
    
    # Plot co2 and relative_temp on the twin axes
    axes[0].plot(climate_change.index, climate_change["co2"], label="CO2")
    axes[1].plot(climate_change.index, climate_change["relative_temp"], label="Relative Temperature")
    
    # Annotate the first date at which co2 exceeded 400
    axes[0].annotate("CO2 exceeded 400 ppm", xy=(2014, 400), xytext=(2010, 420))
    
    # Label the axes
    axes[0].set_xlabel("Date")
    axes[0].set_ylabel("CO2 (ppm)")
    axes[1].set_xlabel("Date")
    axes[1].set_ylabel("Relative Temperature (°C)")
    
    # Add a legend
    plt.legend()
    
    # Show the figure
    plt.show()
    medals
    #3
    plt.scatter(medals["Gold"], medals["Silver"], c="blue", label="Country")
    
    # Label each point with the country name
    for i, country in enumerate(medals.index):
        plt.annotate(country, (medals["Gold"][i], medals["Silver"][i]), xytext=(5, 5), textcoords="offset points", fontsize=14)
    
    # Label the axes
    plt.xlabel("Gold Medals")
    plt.ylabel("Silver Medals")
    
    # Add a legend
    plt.legend()
    
    # Show the figure
    plt.show()
    summer_2016
    #4
    # Create a histogram of the age distribution for each sport
    for sport in summer_2016['Sport']:
        plt.hist(summer_2016[summer_2016['Sport']==sport]["Age"], bins=50)
        plt.title(sport)
        plt.xlabel("Age")
        plt.ylabel("Frequency")
    
    plt.show()