Skip to content
Introduction to Deep Learning in Python
  • AI Chat
  • Code
  • Report
  • Introduction to Deep Learning in Python

    Run the hidden code cell below to import the data used in this course.

    # Import pandas
    import pandas as pd
    
    # Import the course datasets 
    wages = pd.read_csv('datasets/hourly_wages.csv')
    mnist = pd.read_csv('datasets/mnist.csv')
    titanic = pd.read_csv('datasets/titanic_all_numeric.csv')
    wages
    import plotly.express as px
    
    # Create a scatter plot with age on the x-axis and experience_yrs on the y-axis
    fig = px.scatter(wages, x='age', y='experience_yrs')
    
    # Add axis labels and a title
    fig.update_layout(
        xaxis_title="Age",
        yaxis_title="Experience (years)",
        title="Scatter Plot of Age vs. Experience (years)"
    )
    
    # Show the plot
    fig.show()
    import numpy as np
    import tensorflow as tf 
    from tensorflow import keras
    from tensorflow.keras.preprocessing import image
    from tensorflow.keras.applications.resnet50 import preprocess_input
    img = image.load_img('C0AAB61D-16FC-4BA2-B664-C88F2666E94B.jpeg', target_size=(224, 224))
    img_array = image.img_to_array(img=img)
    img_exp = np.expand_dims(img_array, axis=0)
    img_ready = preprocess_input(img_exp)
    import matplotlib
    import matplotlib.pyplot as plt
    plt.matshow(img_array)
    plt.show()
    from tensorflow.keras.applications.resnet50 import ResNet50, decode_predictions
    model = ResNet50(weights='imagenet')
    preds = model.predict(img_ready)
    print('Predictions:', decode_predictions(preds, top=3)[0])

    Take Notes

    Add notes about the concepts you've learned and code cells with code you want to keep.