Skip to content
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.read_csv('MiningProcess_Flotation_Plant_Database.csv',decimal=",")
df.head()
df.shape
df['% Iron Feed']
df.describe()
max_date = df['date'].max()
print('The max date is ' + str(max_date))

min_date = df['date'].min()
print('The min date is ' + str(min_date))
df_june = df[(df['date'] > "2017-05-31 23:59:59") & (df['date'] < "2017-06-02")].reset_index(drop=True)
important_cols = ['date', '% Iron Concentrate', '% Silica Concentrate', 'Ore Pulp pH', 'Flotation Column 05 Level']
df_june_important = df_june[important_cols]
print(df_june_important)
sns.pairplot(df_june_important)
df_june_important.corr()
sns.lineplot(x = 'date', y = '% Iron Concentrate', data = df_june)
for i in important_cols:
    sns.lineplot(x = 'date', y = i,  data = df_june)
    plt.show()