Skip to content
Predicting Movie Rental Durations
  • AI Chat
  • Code
  • Report
  • A DVD rental company needs your help! They want to figure out how many days a customer will rent a DVD for based on some features and has approached you for help. They want you to try out some regression models which will help predict the number of days a customer will rent a DVD for. The company wants a model which yeilds a MSE of 3 or less on a test set. The model you make will help the company become more efficient inventory planning.

    The data they provided is in the csv file rental_info.csv. It has the following features:

    • "rental_date": The date (and time) the customer rents the DVD.
    • "return_date": The date (and time) the customer returns the DVD.
    • "amount": The amount paid by the customer for renting the DVD.
    • "amount_2": The square of "amount".
    • "rental_rate": The rate at which the DVD is rented for.
    • "rental_rate_2": The square of "rental_rate".
    • "release_year": The year the movie being rented was released.
    • "length": Lenght of the movie being rented, in minuites.
    • "length_2": The square of "length".
    • "replacement_cost": The amount it will cost the company to replace the DVD.
    • "special_features": Any special features, for example trailers/deleted scenes that the DVD also has.
    • "NC-17", "PG", "PG-13", "R": These columns are dummy variables of the rating of the movie. It takes the value 1 if the move is rated as the column name and 0 otherwise. For your convinience, the reference dummy has already been dropped.
    import pandas as pd
    import numpy as np
    
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import mean_squared_error
    
    # Import any additional modules and start coding below
    # For lasso
    from sklearn.linear_model import Lasso
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    
    # Run OLS
    from sklearn.linear_model import LinearRegression
    from sklearn.metrics import mean_squared_error
    
    # Random forest
    from sklearn.ensemble import RandomForestRegressor
    from sklearn.model_selection import RandomizedSearchCV
    
    # Read in data
    df_rental = pd.read_csv("rental_info.csv")
    
    # Add information on rental duration
    df_rental["rental_length"] = pd.to_datetime(df_rental["return_date"]) - pd.to_datetime(df_rental["rental_date"])
    df_rental["rental_length_days"] = df_rental["rental_length"].dt.days
    
    ### Add dummy variables
    # Add dummy for deleted scenes
    df_rental["deleted_scenes"] =  np.where(df_rental["special_features"].str.contains("Deleted Scenes"), 1, 0)
    # Add dummy for behind the scenes
    df_rental["behind_the_scenes"] =  np.where(df_rental["special_features"].str.contains("Behind the Scenes"), 1, 0)
    
    
    # Choose columns to drop
    cols_to_drop = ["special_features", "rental_length", "rental_length_days", "rental_date", "return_date"]
    
    # Split into feature and target sets
    X = df_rental.drop(cols_to_drop, axis=1)
    y = df_rental["rental_length_days"]
    
    # Further split into training and test data
    X_train,X_test,y_train,y_test = train_test_split(X, 
                                                     y, 
                                                     test_size=0.2, 
                                                     random_state=9)
    #the Lasso model
    lasso = Lasso(alpha=0.3, random_state=9) 
    lasso.fit(X_train, y_train)
    lasso_coef = lasso.coef_
    
    #feature selection on columns with positive coefficients
    X_lasso_train, X_lasso_test = X_train.iloc[:, lasso_coef > 0], X_test.iloc[:, lasso_coef > 0]
    
    # OLS models run on lasso chosen regression
    ols = LinearRegression()
    ols = ols.fit(X_lasso_train, y_train)
    y_test_pred = ols.predict(X_lasso_test)
    mse_lin_reg_lasso = mean_squared_error(y_test, y_test_pred)
    # Random forest hyperparameter space
    param_dist = {'n_estimators': np.arange(1,101,1),
              'max_depth':np.arange(1,11,1)}
    
    # random forest regressor
    rf = RandomForestRegressor()
    
    # random search used to find the best hyperparameters
    rand_search = RandomizedSearchCV(rf, 
                                     param_distributions=param_dist, 
                                     cv=5, 
                                     random_state=9)
    
    #random search object fitted to the data
    rand_search.fit(X_train, y_train)
    
    #best hyper param variable
    hyper_params = rand_search.best_params_
    
    #random forest run on the chosen hyper parameters
    rf = RandomForestRegressor(n_estimators=hyper_params["n_estimators"], 
                               max_depth=hyper_params["max_depth"], 
                               random_state=9)
    rf.fit(X_train,y_train)
    rf_pred = rf.predict(X_test)
    mse_random_forest= mean_squared_error(y_test, rf_pred)
    
    # Random forest gives lowest MSE so:
    best_model = rf
    best_mse = mse_random_forest