Skip to content
Project: Clustering Antarctic Penguin Species
source: @allison_horst https://github.com/allisonhorst/penguins
You have been asked to support a team of researchers who have been collecting data about penguins in Antartica! The data is available in csv-Format as penguins.csv
Origin of this data : Data were collected and made available by Dr. Kristen Gorman and the Palmer Station, Antarctica LTER, a member of the Long Term Ecological Research Network.
The dataset consists of 5 columns.
| Column | Description |
|---|---|
| culmen_length_mm | culmen length (mm) |
| culmen_depth_mm | culmen depth (mm) |
| flipper_length_mm | flipper length (mm) |
| body_mass_g | body mass (g) |
| sex | penguin sex |
Unfortunately, they have not been able to record the species of penguin, but they know that there are at least three species that are native to the region: Adelie, Chinstrap, and Gentoo. Your task is to apply your data science skills to help them identify groups in the dataset!
# Import Required Packages
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# Loading and examining the dataset
penguins_df = pd.read_csv("penguins.csv")
penguins_df.head()penguin_dummies = pd.get_dummies(penguins_df['sex'], drop_first=True)
penguin_dummies = pd.concat([penguins_df, penguin_dummies], axis=1)
penguin_dummies = penguin_dummies.drop('sex', axis=1)scaler = StandardScaler()
penguin_scaled = scaler.fit_transform(penguin_dummies)
penguin_scaledinertias = []
ks = range(1,10)
for k in ks:
kmeans = KMeans(n_clusters=k, random_state=42).fit(penguin_scaled)
inertias.append(kmeans.inertia_)
# --- Visualization ---
plt.figure(figsize=(7, 5))
plt.plot(list(ks), inertias, marker='o')
plt.xticks(list(ks))
plt.xlabel("Number of clusters (k)")
plt.ylabel("Inertia")
plt.title("Elbow Analysis (KMeans)")
plt.grid(True, linestyle="--", alpha=0.5)
plt.show()
kmean_optimal = KMeans(n_clusters=6, random_state=42)
kmean_optimal.fit(penguin_scaled)
labels = kmeans.labels_penguins_df['label'] = labels
# 2️⃣ Choose interpretable features to plot
x_col = "culmen_length_mm"
y_col = "culmen_depth_mm"
# ===============================
# 4️⃣ Visualize the clusters (for 2D data)
# ===============================
plt.figure(figsize=(8,6))
plt.scatter(
penguins_df[x_col],
penguins_df[y_col],
c=penguins_df["label"],
cmap="viridis",
alpha=0.7,
s=60
)
plt.title("K-Means Clustering of Penguins (k=6)")
plt.xlabel(x_col)
plt.ylabel(y_col)
plt.colorbar(label="Cluster")
plt.grid(True, linestyle="--", alpha=0.5)
plt.show()import numpy as np
# 1) Identify numeric (non-binary) columns
num_cols = penguins_df.select_dtypes(include=[np.number]).columns.tolist()
# treat as binary if the column has only two unique values and those are {0,1}
binary_like = []
for c in num_cols:
vals = penguins_df[c].dropna().unique()
if len(vals) <= 2 and set(np.unique(vals)).issubset({0, 1}):
binary_like.append(c)
numeric_columns = [c for c in num_cols if c not in binary_like]
# 2) Attach cluster labels to the original DataFrame
penguins_df = penguins_df.copy()
penguins_df["label"] = kmeans.labels_
# 3) Final characteristic DataFrame (means per cluster)
stat_penguins = (
penguins_df
.groupby("label")[numeric_columns]
.mean()
.round(3)
)
# (Optional) Add cluster sizes as the first column
cluster_sizes = penguins_df.groupby("label").size().rename("n")
stat_penguins = cluster_sizes.to_frame().join(stat_penguins)
# 4) Done — inspect
print("Numeric (non-binary) columns used:", numeric_columns)
print("\nFinal characteristic table (means):")
print(stat_penguins)