Skip to content
RDocumentation: woe
  • AI Chat
  • Code
  • Report
  • Note that this notebook was automatically generated from an RDocumentation page. It depends on the package and the example code whether this code will run without errors. You may need to edit the code to make things work.

    ## load German credit data
    data("GermanCredit")
    
    ## training/validation split
    train <- sample(nrow(GermanCredit), round(0.6*nrow(GermanCredit)))
    
    woemodel <- woe(credit_risk~., data = GermanCredit[train,], zeroadj=0.5, applyontrain = TRUE)
    woemodel
    
    ## plot variable information values and woes
    plot(woemodel)
    plot(woemodel, type = "woes")
    
    ## apply woes 
    traindata <- predict(woemodel, GermanCredit[train,], replace = TRUE)
    str(traindata)
    
    ## fit logistic regression model
    glmodel     <- glm(credit_risk~., traindata, family=binomial)
    summary(glmodel)
    pred.trn <- predict(glmodel, traindata, type = "response")
    
    ## predict validation data
    validata <- predict(woemodel, GermanCredit[-train,], replace = TRUE)
    pred.val <- predict(glmodel, validata, type = "response")
    
    
    if(!require('klaR')) {
        install.packages('klaR')
        library('klaR')
    }