Skip to content
Project: Clustering Antarctic Penguin Species
source: @allison_horst https://github.com/allisonhorst/penguins
You have been asked to support a team of researchers who have been collecting data about penguins in Antartica! The data is available in csv-Format as penguins.csv
Origin of this data : Data were collected and made available by Dr. Kristen Gorman and the Palmer Station, Antarctica LTER, a member of the Long Term Ecological Research Network.
The dataset consists of 5 columns.
| Column | Description |
|---|---|
| culmen_length_mm | culmen length (mm) |
| culmen_depth_mm | culmen depth (mm) |
| flipper_length_mm | flipper length (mm) |
| body_mass_g | body mass (g) |
| sex | penguin sex |
Unfortunately, they have not been able to record the species of penguin, but they know that there are at least three species that are native to the region: Adelie, Chinstrap, and Gentoo. Your task is to apply your data science skills to help them identify groups in the dataset!
# Import Required Packages
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# Loading and examining the dataset
penguins_df = pd.read_csv("penguins.csv")
penguins_df.head()# INFO
penguins_df.info()# OVERALL STATISTICS
print(penguins_df.describe())import matplotlib.pyplot as plt
# Scatter plot of culmen length vs. culmen depth
plt.figure(figsize=(8, 6))
plt.scatter(penguins_df['culmen_length_mm'], penguins_df['culmen_depth_mm'], alpha=0.7)
plt.title('Scatter Plot of Culmen Length vs Culmen Depth')
plt.xlabel('Culmen Length (mm)')
plt.ylabel('Culmen Depth (mm)')
plt.grid(True)
plt.show()# Remove non-numeric columns for clustering
df = penguins_df.select_dtypes(include=['float64', 'int64'])
df.head()# Standardize the data
scaler = StandardScaler()
scaled_data = scaler.fit_transform(df)
scaled_df = pd.DataFrame(scaled_data)
scaled_df.head()# Apply KMeans clustering with 3 clusters
kmeans = KMeans(n_clusters=3, random_state=0)
penguins_df['cluster'] = kmeans.fit_predict(scaled_data)
# Calculate the mean of each column by cluster
stat_penguins = penguins_df.groupby('cluster').mean()
stat_penguins.head()import matplotlib.pyplot as plt
# Scatter plot comparing culmen length and flipper length by cluster
plt.figure(figsize=(8, 6))
plt.scatter(stat_penguins['culmen_length_mm'], stat_penguins['flipper_length_mm'], c='blue', s=100)
# Label each point with the cluster index
for i in range(len(stat_penguins)):
plt.text(stat_penguins['culmen_length_mm'][i] + 0.1,
stat_penguins['flipper_length_mm'][i] + 0.1,
f'Cluster {i}', fontsize=9)
plt.title('Cluster Comparison of Culmen Length and Flipper Length')
plt.xlabel('Culmen Length (mm)')
plt.ylabel('Flipper Length (mm)')
plt.grid(True)
plt.show()