Skip to content

Course Notes

Use this workspace to take notes, store code snippets, and build your own interactive cheatsheet!

# Import any packages you want to use here

Take Notes

Add notes here about the concepts you've learned and code cells with code you want to keep.

Joining data with pandas

Add your code snippets here

#Inner Join Pandas

wards_census = wards.merge(census, on='ward') print(wards_census.head(4))

After adding Suffixes to the columns of joining tables

wards_census = wards.merge(census, on='ward', suffixes=('_ward','_cen'))

Multiple columns Merge

grants.merge(licenses, on=['address','zip'])

Merging Multiple tables

grants_licenses_ward = grants.merge(licenses, on=['address','zip'])
.merge(wards, on='ward', suffixes=('_bus','_ward'))

Threetables:

df1.merge(df2, on='col') \ .merge(df3, on='col')

Fourtables:

df1.merge(df2, on='col') \ .merge(df3, on='col') \ .merge(df4, on='col')

Merging Tables With Different Join Types

movies_taglines = movies.merge(taglines, on='id', how='left')

tv_movies = movies.merge(tv_genre, how='right',left_on='id', right_on='movie_id')

family_comedy = family.merge(comedy, on='movie_id', how='outer',suffixes=('_fam', '_com'))

original_sequels = sequels.merge(sequels, left_on='sequel', right_on='id',suffixes=('_org','_seq'))

movies_genres = movies.merge(movie_to_genres, left_on='id', left_index=True, right_on='movie_id', right_index=True)

Filtering joins