Skip to content
Project
  • AI Chat
  • Code
  • Report
  • Arctic Penguin Exploration: Unraveling Clusters in the Icy Domain with K-means clustering

    Alt text source: @allison_horst https://github.com/allisonhorst/penguins

    You have been asked to support a team of researchers who have been collecting data about penguins in Antartica!

    Origin of this data : Data were collected and made available by Dr. Kristen Gorman and the Palmer Station, Antarctica LTER, a member of the Long Term Ecological Research Network.

    The dataset consists of 5 columns.

    • culmen_length_mm: culmen length (mm)
    • culmen_depth_mm: culmen depth (mm)
    • flipper_length_mm: flipper length (mm)
    • body_mass_g: body mass (g)
    • sex: penguin sex

    Unfortunately, they have not been able to record the species of penguin, but they know that there are three species that are native to the region: Adelie, Chinstrap, and Gentoo, so your task is to apply your data science skills to help them identify groups in the dataset!

    # Import Required Packages
    import pandas as pd
    
    import matplotlib.pyplot as plt
    from sklearn.decomposition import PCA
    from sklearn.cluster import KMeans
    from sklearn.preprocessing import StandardScaler
    
    # Loading and examining the dataset
    penguins_df = pd.read_csv("data/penguins.csv")
    penguins_df
    penguins_df = penguins_df.dropna()
    penguins_df
    penguins_df.isnull().sum()
    penguins_df.describe()
    import seaborn as sns
    for i in penguins_df.columns[:-1]:
        ax=sns.boxplot(penguins_df[i])
        plt.show()
    penguins_clean=penguins_df[(penguins_df['flipper_length_mm']>0) & (penguins_df['flipper_length_mm']<1000)]
    penguins_clean.describe()
    df = pd.get_dummies(penguins_clean).drop('sex_.',axis=1)
    scaler = StandardScaler()
    X=scaler.fit_transform(df)
    penguins_preprocessed=pd.DataFrame(data=X,columns=df.columns)
    penguins_preprocessed