Skip to content
Project: Clustering Antarctic Penguin Species
source: @allison_horst https://github.com/allisonhorst/penguins
You have been asked to support a team of researchers who have been collecting data about penguins in Antartica! The data is available in csv-Format as penguins.csv
Origin of this data : Data were collected and made available by Dr. Kristen Gorman and the Palmer Station, Antarctica LTER, a member of the Long Term Ecological Research Network.
The dataset consists of 5 columns.
| Column | Description |
|---|---|
| culmen_length_mm | culmen length (mm) |
| culmen_depth_mm | culmen depth (mm) |
| flipper_length_mm | flipper length (mm) |
| body_mass_g | body mass (g) |
| sex | penguin sex |
Unfortunately, they have not been able to record the species of penguin, but they know that there are at least three species that are native to the region: Adelie, Chinstrap, and Gentoo. Your task is to apply your data science skills to help them identify groups in the dataset!
# Import Required Packages
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# Loading and examining the dataset
penguins_df = pd.read_csv("penguins.csv")
penguins_df.head()penguins_df.groupby('sex').agg('mean','max','min')penguins_df.groupby('sex').count()# check data to quantify the missing data and impute if necessary
penguins_df.info()penguins_df = pd.get_dummies(penguins_df)
print(penguins_df.head())# scale the data using Standard Scaler
scaler = StandardScaler()
scaled_df = scaler.fit_transform(penguins_df)
# KMeans Clustering
inertia = []
for cluster in range(1,8):
model = KMeans(n_clusters=cluster,random_state=42)
model.fit(scaled_df)
inertia.append(model.inertia_)
plt.plot(inertia)
plt.show()
# from the plot above, we see the inertia begins to decrease more slowly after 3
# therefore we will use n_clusters = 3
model = KMeans(n_clusters = 3, random_state=42)
model.fit(scaled_df)
labels = model.predict(scaled_df)
xs = scaled_df[:,0]
ys = scaled_df[:,2]
plt.scatter(xs,ys,c=labels)
plt.show()
numeric_columns = list(penguins_df.columns[0:4])
print(numeric_columns)
penguins_df["label"] = labels
print(penguins_df.head())stat_penguins= penguins_df.groupby('label')[numeric_columns].mean()
print(stat_penguins)