Skip to content
KNN
#Using scikit -learn to fit a classifier
from sklearn.neighbors import KNeighborsClassifier
X = churn_df[[ "total_day_charge", "total_eve_charge"]].values y = churn_df["churn"].values
print (X.shape, y.shape)
knn = KNeighborsClassifier(n_neighbors= 15)
knn.fit(X, y)
#Predicting on unlabeled data
X_new = np.array([[ 56.8, 17.5],
[24.4, 24.1],
[50.1, 10.9]])
print (X_new.shape)
predictions = knn.predict(X_new)
print ('Predictions: {}'.format(predictions))
#Train/test
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size= 0.3, random_state=21, stratify=y)
knn = KNeighborsClassifier(n_neighbors= 6)
knn.fit(X_train, y_train)
print (knn.score(X_test, y_test))
#Model Complexity and over/under fitting
train_accuracies = {}
test_accuracies = {}
neighbors = np.arange(1, 26)
for neighbor in neighbors:
knn = KNeighborsClassifier(n_neighbors=neighbor)
knn.fit(X_train, y_train)
train_accuracies[neighbor] = knn.score(X_train, y_train)
test_accuracies[neighbor] = knn.score(X_test, y_test)
#Plotting Results
plt.figure(figsize=( 8, 6))
plt.title("KNN: Varying Number of Neighbors")
plt.plot(neighbors, train_accuracies.values(), label="Training Accuracy")
plt.plot(neighbors, test_accuracies.values(), label="Testing Accuracy")
plt.legend()
plt.xlabel("Number of Neighbors")
plt.ylabel("Accuracy")
plt.show()