Skip to content
Logistics Regression
import numpy as np
import matplotlib.pyplot as plt
import pandas as pdImporting Dataset
dataset = pd.read_csv('Data.csv')
x = dataset.iloc[:, :-1].values
y = dataset.iloc[:, -1].valuesprint (x)print (y)Taking care of missing data
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(missing_values = np.nan, strategy = 'mean')
imputer.fit(x[:, 1:3])
x[:, 1:3] = imputer.transform(x[:, 1:3])print (x)Encoding Categorical Data
Encoding the Independent Variable
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
ct = ColumnTransformer(transformers = [('encode', OneHotEncoder(), [0])], remainder = 'passthrough')
x = np.array(ct.fit_transform(x))
print (x)Encoding the Dependent Variable
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
y = le.fit_transform(y)print (y)Splitting the Dataset into the Training set and Test set