Skip to content

A common problem when creating models to generate business value from data is that the datasets can be so large that it can take days for the model to generate predictions. Ensuring that your dataset is stored as efficiently as possible is crucial for allowing these models to run on a more reasonable timescale without having to reduce the size of the dataset.

I have been hired by a pretend major online data science training provider called Training Data Ltd. to clean up one of their largest customer datasets. This dataset will eventually be used to predict whether their students are looking for a new job or not, information that they will then use to direct them to prospective recruiters.

I have been given access to customer_train.csv, which is a subset of their entire customer dataset, so you can create a proof-of-concept of a much more efficient storage solution. The dataset contains anonymized student information, and whether they were looking for a new job or not during training:

ColumnDescription
student_idA unique ID for each student.
cityA code for the city the student lives in.
city_development_indexA scaled development index for the city.
genderThe student's gender.
relevant_experienceAn indicator of the student's work relevant experience.
enrolled_universityThe type of university course enrolled in (if any).
education_levelThe student's education level.
major_disciplineThe educational discipline of the student.
experienceThe student's total work experience (in years).
company_sizeThe number of employees at the student's current employer.
company_typeThe type of company employing the student.
last_new_jobThe number of years between the student's current and previous jobs.
training_hoursThe number of hours of training completed.
job_changeAn indicator of whether the student is looking for a new job (1) or not (0).
# Importation of libraries to play with
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Load dataset
ds_jobs = pd.read_csv("customer_train.csv")

# Create copy to transform
df = ds_jobs.copy()
# Preview dataset
print(df.shape)
print(df.describe())
print(df.info())
print(df.head())
# Preview first 5 rows of the dataframe
df.head()
# Replace null values
df['major_discipline'] = df['major_discipline'].fillna('No Major')
df['company_type'] = df['company_type'].fillna('Other')
df['company_size'] = df['company_size'].fillna('0')
# Preiew gender values
print(df['gender'].value_counts())
print(df['gender'].isna().sum())
# Fill missing values
df['gender'].fillna(method='ffill', inplace=True)
# View Results
print(df['gender'].value_counts())
print(df['gender'].isna().sum())
# Preview count and missing values
print(df['last_new_job'].value_counts())
print(df['last_new_job'].isna().sum())
# Fill null values
df['last_new_job'] = df['last_new_job'].fillna('never')
# Convert values to integers, specify categories, convert to Pandas categorical data type
df['last_new_job'] = df['last_new_job'].map({'never': 0, '1': 1, '2': 2, '3': 3, '4': 4, '>4': 5})
last = pd.CategoricalDtype([0, 1, 2, 3, 4, 5], ordered=True)
df['last_new_job'] = df['last_new_job'].astype(last)
# View Results
print(df['last_new_job'].value_counts())
print(df['last_new_job'].isna().sum())
# Preview education level values
print(df['education_level'].value_counts())
print(df['education_level'].isna().sum())
# Fill null values
df['education_level'] = df['education_level'].fillna('Primary School')
# Specify categories and convert to Pandas categorical data type
level = pd.CategoricalDtype(['Primary School', 'High School', 'Graduate', 'Masters', 'Phd'], ordered=True)
df['education_level'] = df['education_level'].astype(level)
# View Results
print(df['education_level'].value_counts())
print(df['education_level'].isna().sum())
# Preview enrolled university values
print(df['enrolled_university'].value_counts())
print(df['enrolled_university'].isna().sum())
# Fill null values
df['enrolled_university'] = df['enrolled_university'].fillna('no_enrollment')
# Specify categories and convert to Pandas categorical data type
study = pd.CategoricalDtype(['no_enrollment', 'Part time course', 'Full time course'], ordered=True)
df['enrolled_university'] = df['enrolled_university'].astype(study)
# View Results
print(df['enrolled_university'].value_counts())
print(df['enrolled_university'].isna().sum())
# Transform data types to save memory storage
df['relevant_experience'] = df['relevant_experience'].map\
                            ({'Has relevant experience': True, 'No relevant experience': False})
df['job_change'] = df['job_change'].map({1: True, 0: False})
# Float and integer data types
df['city_development_index'] = df['city_development_index'].astype('float16')
df[['student_id', 'training_hours']] = df[['student_id', 'training_hours']].astype('int32')
# Categorical data type
df[['city', 'gender', 'major_discipline', 'company_type']] =\
df[['city', 'gender', 'major_discipline', 'company_type']].astype('category')
# Remove punctuation to convert string to integer
df['experience'] = df['experience'].str.replace('[^\w\s]', '', regex=True)
df['experience'] = df['experience'].fillna(0)
df['experience'] = df['experience'].astype('int32')
# View DataFrame information
df.info()