Speed Up Your Process Using the Workspace AI Assistant
Discover the power of our AI Assistant. Get started with exciting prompts that will supercharge your data workflow!
The sample dataset we'll use here consists of orders made with a UK-based online retailer from December 2010 to December 2011. Source of dataset.
1. Fix errors
The cell below contains an error. You can press "Fix & Explain" to get your AI Assistant to fix it for you and explain what was wrong with the code.
this_is_a_variable = 42
print(this_is_a_variable)SELECT department, AVG(salary) AS average_salary FROM employees GROUP BY department ORDER BY average_salary DESC;
import folium
Coordinates for London
london_coords = [51.5074, -0.1278]
Create a map centered on London
m = folium.Map(location=london_coords, zoom_start=10)
Add a marker for London
folium.Marker( location=london_coords, popup="London", icon=folium.Icon(color="blue", icon="info-sign") ).add_to(m)
Display the map
m
import folium
# Create a map centered around New York
map = folium.Map(location=[40.7128, -74.0060], zoom_start=12)
# Add a marker for New York
folium.Marker(location=[40.7128, -74.0060], popup='New York').add_to(map)
# Display the map
mapImport essential packages for a machine learning classification task
Data manipulation and analysis
import numpy as np import pandas as pd
Data visualization
import matplotlib.pyplot as plt import seaborn as sns
Machine learning models and utilities
from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.metrics import classification_report, confusion_matrix, accuracy_score from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC
Optional: Suppress warnings for cleaner output
import warnings warnings.filterwarnings('ignore')
import pandas as pd import plotly.express as px
Load the dataset
df = pd.read_csv('online_retail.csv', encoding='ISO-8859-1')
Convert InvoiceDate to datetime
df['InvoiceDate'] = pd.to_datetime(df['InvoiceDate'])
Filter for 2011 data only
df_2011 = df[df['InvoiceDate'].dt.year == 2011]
Remove rows with missing or negative values
df_2011 = df_2011.dropna(subset=['Quantity', 'UnitPrice']) df_2011 = df_2011[(df_2011['Quantity'] > 0) & (df_2011['UnitPrice'] > 0)]
Calculate sales per row
df_2011['Sales'] = df_2011['Quantity'] * df_2011['UnitPrice']
Extract month
df_2011['Month'] = df_2011['InvoiceDate'].dt.month
Group by month and sum sales
monthly_sales = df_2011.groupby('Month')['Sales'].sum().reset_index()
Map month numbers to names (optional)
import calendar monthly_sales['Month'] = monthly_sales['Month'].apply(lambda x: calendar.month_name[x])
Create Plotly bar plot
fig = px.bar(monthly_sales, x='Month', y='Sales', title='Monthly Sales in 2011', labels={'Sales': 'Total Sales', 'Month': 'Month'}, text_auto='.2s')
fig.update_layout(xaxis_title='Month', yaxis_title='Total Sales (£)', xaxis={'categoryorder':'array', 'categoryarray':list(calendar.month_name)[1:]})
fig.show()
What else will you do with it?
It's up to you now! How will you use your new AI Assistant?
Looking for more prompts to try? The following tutorial has more: 10 Ways to Speed Up Your Analysis With the Workspace AI Assistant
Looking for more datasets to explore? We have a bunch of datasets your new AI Assistant will love to explore!