Skip to content

Analyzing Unicorn Companies

The purpose of this project is to support an investment firm by analyzing trends in high-growth companies. The firm is particularly interested in identifying industries with the highest valuations and the rate at which new high-value companies are emerging. By providing this information, the firm gains a competitive edge by understanding industry trends and structuring their portfolio accordingly.

The unicorns databases contain the following tables:

dates

ColumnDescription
company_idA unique ID for the company.
date_joinedThe date that the company became a unicorn.
year_foundedThe year that the company was founded.

funding

ColumnDescription
company_idA unique ID for the company.
valuationCompany value in US dollars.
fundingThe amount of funding raised in US dollars.
select_investorsA list of key investors in the company.

industries

ColumnDescription
company_idA unique ID for the company.
industryThe industry that the company operates in.

companies

ColumnDescription
company_idA unique ID for the company.
companyThe name of the company.
cityThe city where the company is headquartered.
countryThe country where the company is headquartered.
continentThe continent where the company is headquartered.
Spinner
DataFrameas
df
variable
WITH top_industries AS
(
    SELECT i.industry, 
        COUNT(*)
    FROM industries AS i
    INNER JOIN dates AS d
        ON i.company_id = d.company_id
    WHERE EXTRACT(year FROM d.date_joined) in ('2019', '2020', '2021')
    GROUP BY industry
    ORDER BY count DESC
    LIMIT 3
),

yearly_rankings AS 
(
    SELECT COUNT(*) AS num_unicorns,
        i.industry,
        EXTRACT(year FROM d.date_joined) AS year,
        AVG(f.valuation) AS average_valuation
    FROM industries AS i
    INNER JOIN dates AS d
        ON i.company_id = d.company_id
    INNER JOIN funding AS f
        ON d.company_id = f.company_id
    GROUP BY industry, year
)

SELECT industry,
    year,
    num_unicorns,
    ROUND(AVG(average_valuation / 1000000000), 2) AS average_valuation_billions
FROM yearly_rankings
WHERE year in ('2019', '2020', '2021')
    AND industry in (SELECT industry
                    FROM top_industries)
GROUP BY industry, num_unicorns, year
ORDER BY year DESC, num_unicorns DESC