Skip to content

As a Data Engineer at an electronics e-commerce company, Voltmart, you have been requested by a peer Machine Learning team to clean the data containing the information about orders made last year. They are planning to further use this cleaned data to build a demand forecasting model. To achieve this, they have shared their requirements regarding the desired output table format.

An analyst shared a parquet file called "orders_data.parquet" for you to clean and preprocess.

You can see the dataset schema below along with the cleaning requirements:

orders_data.parquet

columndata typedescriptioncleaning requirements
order_datetimestampDate and time when the order was madeModify: Remove orders placed between 12am and 5am (inclusive); convert from timestamp to date
time_of_daystringPeriod of the day when the order was madeNew column containing (lower bound inclusive, upper bound exclusive): "morning" for orders placed 5-12am, "afternoon" for orders placed 12-6pm, and "evening" for 6-12pm
order_idlongOrder IDN/A
productstringName of a product orderedRemove rows containing "TV" as the company has stopped selling this product; ensure all values are lowercase
product_eandoubleProduct IDN/A
categorystringBroader category of a productEnsure all values are lowercase
purchase_addressstringAddress line where the order was made ("House Street, City, State Zipcode")N/A
purchase_statestringUS State of the purchase addressNew column containing: the State that the purchase was ordered from
quantity_orderedlongNumber of product units orderedN/A
price_eachdoublePrice of a product unitN/A
cost_pricedoubleCost of production per product unitN/A
turnoverdoubleTotal amount paid for a product (quantity x price)N/A
margindoubleProfit made by selling a product (turnover - cost)N/A

from pyspark.sql import (
    SparkSession,
    types,
    functions as F,
)

spark = (
    SparkSession
    .builder
    .appName('cleaning_orders_dataset_with_pyspark')
    .getOrCreate()
)
orders_data = spark.read.parquet('orders_data.parquet')
orders_data.toPandas().head()
# Start here, using as many cells as you require
import pyspark.sql.functions as F
from pyspark.sql.functions import date_format
orders_data=orders_data.withColumn("time_of_day",
    F.when((F.hour(orders_data.order_date)>=0) & (F.hour(orders_data.order_date)<=5),'night')
    .when((F.hour(orders_data.order_date)>=6) & (F.hour(orders_data.order_date)<=11),'morning') 
    .when((F.hour(orders_data.order_date)>=12) & (F.hour(orders_data.order_date)<=17),'afternoon') 
    .when((F.hour(orders_data.order_date)>=18) & (F.hour(orders_data.order_date)<=23),'evening') 
    .otherwise(None))
orders_data=orders_data.filter(orders_data.time_of_day!='night')
orders_data=orders_data.withColumn("order_date",date_format('order_date', 'yyyy-MM-dd').cast('date'))
orders_data=orders_data.withColumn("product",F.lower(orders_data.product))
orders_data=orders_data.withColumn("category",F.lower(orders_data.category))
#orders_data=orders_data.where(~orders_data['product'].contains('tv'))
orders_data=orders_data.filter(~orders_data['product'].contains('tv'))
orders_data=orders_data.withColumn("purchase_state",F.trim(F.substring(F.split(orders_data.purchase_address,",").getItem(2),1,3)))
n_states=orders_data.select("purchase_state").distinct().count()
orders_data.write.mode('overwrite').parquet("orders_data_clean.parquet")
print(n_states)
orders_data.toPandas().head()
#orders_data.select(orders_data.product,orders_data.cost_price)
type(orders_data)
orders_data.select("purchase_state").distinct().show()