Skip to content
1 hidden cell
Data Manipulation with pandas
Data Manipulation with pandas
Run the hidden code cell below to import the data used in this course.
1 hidden cell
Take Notes
Add notes about the concepts you've learned and code cells with code you want to keep.
Add your notes here
# Add your code snippets hereExplore Datasets
Use the DataFrames imported in the first cell to explore the data and practice your skills!
- Print the highest weekly sales for each
departmentin thewalmartDataFrame. Limit your results to the top five departments, in descending order. If you're stuck, try reviewing this video. - What was the total
nb_soldof organic avocados in 2017 in theavocadoDataFrame? If you're stuck, try reviewing this video. - Create a bar plot of the total number of homeless people by region in the
homelessnessDataFrame. Order the bars in descending order. Bonus: create a horizontal bar chart. If you're stuck, try reviewing this video. - Create a line plot with two lines representing the temperatures in Toronto and Rome. Make sure to properly label your plot. Bonus: add a legend for the two lines. If you're stuck, try reviewing this video.
# Import NumPy and create custom IQR function
import numpy as np
def iqr(column):
return column.quantile(0.75) - column.quantile(0.25)
# Update to print IQR and median of temperature_c, fuel_price_usd_per_l, & unemployment
print(sales[["temperature_c", "fuel_price_usd_per_l", "unemployment"]].agg([iqr,np.median]))